Improvement in environmental performance of poly(β-hydroxybutyrate)-co-(β-hydroxyvalerate) composites through process modifications

[1]  Juan A. Asenjo,et al.  Microbial Conversion of Methane into poly-β-hydroxybutyrate (PHB): Growth and intracellular product accumulation in a type II methanotroph , 1986 .

[2]  A. Pometto,et al.  Biodegradation of Degradable Plastic Polyethylene by Phanerochaete and Streptomyces Species , 1991, Applied and environmental microbiology.

[3]  R. Heijungs,et al.  Environmental life cycle assessment of products , 1992 .

[4]  W. Page,et al.  Methanogenic Degradation of Poly(3-Hydroxyalkanoates) , 1992, Applied and environmental microbiology.

[5]  M. Curran Life-cycle Assessment: Inventory Guidelines and Principles , 1994 .

[6]  R. Spontak,et al.  Degradation kinetics of glass-reinforced polyesters in chemical environments , 1996, Journal of Materials Science.

[7]  R. Spontak,et al.  Degradation kinetics of glass-reinforced polyesters in chemical environments , 1996, Journal of Materials Science.

[8]  Jessie A. Micales,et al.  The decomposition of forest products in landfills , 1997 .

[9]  Johannes Fresner Starting continuous improvement with a cleaner production assessment in an Austrian textile mill , 1998 .

[10]  Richard S. J. Tol,et al.  New Estimates of the Damage Costs of Climate Change , 1998 .

[11]  Emergency Response,et al.  Characterization of building-related construction and demolition debris in the United States , 1998 .

[12]  M. Heyde,et al.  Ecological considerations on the use and production of biosynthetic and synthetic biodegradable polymers , 1998 .

[13]  T. Gerngross,et al.  Can biotechnology move us toward a sustainable society? , 1999, Nature Biotechnology.

[14]  Johan Thoresen,et al.  Environmental performance evaluation — a tool for industrial improvement , 1999 .

[15]  A. S. uiterkamp,et al.  Upgrading of organic waste: production of the copolymer poly-3-hydroxybutyrate-co-valerate by Ralstonia eutrophus with organic waste as sole carbon source , 1999 .

[16]  Adisa Azapagic,et al.  Life cycle assessment and multiobjective optimisation , 1999 .

[17]  G. Keoleian,et al.  Life‐Cycle Energy, Costs, and Strategies for Improving a Single‐Family House , 2000 .

[18]  Steven C. Slater,et al.  Greenhouse Gas Profile of a Plastic Material Derived from a Genetically Modified Plant , 2000 .

[19]  Roydon Andrew Fraser,et al.  The relative mass-energy-economic (RMEE) method for system boundary selection Part 1: A means to systematically and quantitatively select LCA boundaries , 2000 .

[20]  C. Rossell,et al.  Integrated production of biodegradable plastic, sugar and ethanol , 2001, Applied Microbiology and Biotechnology.

[21]  P. Wambua,et al.  Natural fibres: can they replace glass in fibre reinforced plastics? , 2001 .

[22]  R. Tol Estimates of the Damage Costs of Climate Change. Part 1: Benchmark Estimates , 2002 .

[23]  M. Misra,et al.  Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World , 2002, Renewable Energy.

[24]  M. Humphreys The use of polymer composites in construction , 2003 .

[25]  Minoru Akiyama,et al.  Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation , 2003 .

[26]  N. Kiran-Ciliz,et al.  Reduction in resource consumption by process modifications in cotton wet processes , 2003 .

[27]  Muhammad Pervaiz,et al.  Carbon storage potential in natural fiber composites , 2003 .

[28]  Andrzej K. Bledzki,et al.  Unidirectional hemp and flax EP‐ and PP‐composites: Influence of defined fiber treatments , 2004 .

[29]  S. Joshi,et al.  Are natural fiber composites environmentally superior to glass fiber reinforced composites , 2004 .

[30]  S. Rasmussen,et al.  Hemp raw materials: The effect of cultivar, growth conditions and pretreatment on the chemical composition of the fibres , 2005 .

[31]  C. C. Lin,et al.  PHBV production by Ralstonia eutropha in a continuous stirred tank reactor , 2005 .

[32]  E. Juodis Extracted ventilation air heat recovery efficiency as a function of a building's thermal properties , 2006 .

[33]  Shusheng Pang,et al.  Modelling of Energy Demand in an MDF Plant , 2006 .

[34]  A. Boccaccini,et al.  Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterised Bacillus cereus SPV. , 2007, Journal of biotechnology.

[35]  J S Dennis,et al.  Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-beta-hydroxybutyric acid using life cycle analysis. , 2007, Journal of biotechnology.

[36]  M. Reboredo,et al.  Creep and dynamic mechanical behavior of PP–jute composites: Effect of the interfacial adhesion , 2007 .

[37]  Axel Michaelowa,et al.  Policies, Instruments and Cooperative Arrangements , 2007 .

[38]  Martin K. Patel,et al.  Comparative life cycle studies on poly(3-hydroxybutyrate)-based composites as potential replacement for conventional petrochemical plastics. , 2007, Biomacromolecules.

[39]  O. Edenhofer,et al.  Mitigation from a cross-sectoral perspective , 2007 .

[40]  R. M. Rowell,et al.  Natural fibres: types and properties , 2008 .

[41]  E. Rudnik,et al.  Compostable Polymer Materials , 2008 .

[42]  S. Schneider,et al.  Climate Change 2007 Synthesis report , 2008 .

[43]  Margaret Catherine Morse Anaerobic biodegradation of biocomposites for the building industry , 2009 .

[44]  Mohd Ali Hassan,et al.  Turning waste to wealth-biodegradable plastics polyhydroxyalkanoates from palm oil mill effluent – a Malaysian perspective , 2010 .

[45]  C. Criddle,et al.  Poly-3-Hydroxybutyrate Metabolism in the Type II Methanotroph Methylocystis parvus OBBP , 2011, Applied and Environmental Microbiology.

[46]  S. Billington,et al.  Mechanical response of PHB- and cellulose acetate natural fiber-reinforced composites for construction applications , 2011 .

[47]  Craig S Criddle,et al.  Cradle-to-gate life cycle assessment for a cradle-to-cradle cycle: biogas-to-bioplastic (and back). , 2012, Environmental science & technology.

[48]  Clara Rosalía Álvarez-Chávez,et al.  Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement , 2012 .

[49]  Michael D. Lepech,et al.  Application of multi-criteria material selection techniques to constituent refinement in biobased composites , 2013 .