Decision Tree Complexity and Betti Numbers

We show that any algebraic computation tree or any fixed-degree algebraic tree for solving the membership question of a compact setS?Rnmust have height greater than?(log(si(S)))?cnfor eachi, wheresi(S) is theith Betti number. This generalizes a well-known result by Ben-Or who proved this lower bound for the casei=0, and a recent result by Bjorner and Lovasz who proved this lower bound for allifor linear decision trees.

[1]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[2]  J. Rotman An Introduction to Algebraic Topology , 1957 .

[3]  R. Thom Sur L'Homologie des Varietes Algebriques Réelles , 1965 .

[4]  Andrew Chi-Chih Yao Algebraic Decision Trees and Euler Characteristics , 1995, Theor. Comput. Sci..

[5]  László Lovász,et al.  Linear decision trees, subspace arrangements and Möbius functions , 1994 .

[6]  J. Milnor On the Betti numbers of real varieties , 1964 .

[7]  J. Michael Steele,et al.  Lower Bounds for Algebraic Decision Trees , 1982, J. Algorithms.

[8]  Marek Karpinski,et al.  Lower bounds on testing membership to a polyhedron by algebraic decision trees , 1994, STOC '94.

[9]  Andrew Chi-Chih Yao On Parallel Computation for the Knapsack Problem , 1982, JACM.

[10]  Richard J. Lipton,et al.  On the Complexity of Computations under Varying Sets of Primitives , 1975, J. Comput. Syst. Sci..

[11]  Michael Ben-Or,et al.  Lower bounds for algebraic computation trees , 1983, STOC.

[12]  Richard J. Lipton,et al.  On the Complexity of Computations under Varying Sets of Primitives , 1975, J. Comput. Syst. Sci..

[13]  M. Goresky,et al.  Stratified Morse theory , 1988 .

[14]  Volkmar Welker,et al.  The Homology of "k-Equal" Manifolds and Related Partition Lattices , 1995 .

[15]  László Lovász,et al.  Linear decision trees: volume estimates and topological bounds , 1992, STOC '92.

[16]  M. Hall Distinct representatives of subsets , 1948 .