An Improved Lower Bound for Sparse Reconstruction from Subsampled Hadamard Matrices

We give a short argument that yields a new lower bound on the number of subsampled rows from a bounded, orthonormal matrix necessary to form a matrix with the restricted isometry property. We show that a matrix formed by uniformly subsampling rows of an N × N Hadamard matrix contains a K-sparse vector in the kernel, unless the number of subsampled rows is Ω(K log K log (N/K)) --- our lower bound applies whenever min(K, N/K) > log^C N. Containing a sparse vector in the kernel precludes not only the restricted isometry property, but more generally the application of those matrices for uniform sparse recovery.

[1]  P. Rowlinson FOURIER ANALYSIS ON FINITE GROUPS AND APPLICATIONS (London Mathematical Society Student Texts 43) , 2000 .

[2]  Huy L. Nguyen,et al.  Sparsity lower bounds for dimensionality reducing maps , 2012, STOC '13.

[3]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[4]  Ding‐Zhu Du,et al.  Wiley Series in Discrete Mathematics and Optimization , 2014 .

[5]  慧 廣瀬 A Mathematical Introduction to Compressive Sensing , 2015 .

[6]  Oded Regev,et al.  The Restricted Isometry Property of Subsampled Fourier Matrices , 2015, SODA.

[7]  Massimo Fornasier,et al.  Theoretical Foundations and Numerical Methods for Sparse Recovery , 2010, Radon Series on Computational and Applied Mathematics.

[8]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[9]  B. S. Kašin,et al.  DIAMETERS OF SOME FINITE-DIMENSIONAL SETS AND CLASSES OF SMOOTH FUNCTIONS , 1977 .

[10]  Venkatesan Guruswami,et al.  Restricted Isometry of Fourier Matrices and List Decodability of Random Linear Codes , 2012, SIAM J. Comput..

[11]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[12]  J. Bourgain An Improved Estimate in the Restricted Isometry Problem , 2014 .

[13]  M. Rudelson,et al.  On sparse reconstruction from Fourier and Gaussian measurements , 2008 .

[14]  Dustin G. Mixon,et al.  Discrete Uncertainty Principles and Sparse Signal Processing , 2015, ArXiv.

[15]  Sjoerd Dirksen,et al.  Tail bounds via generic chaining , 2013, ArXiv.

[16]  A. Terras Fourier Analysis on Finite Groups and Applications: Index , 1999 .

[17]  Andrej Yu. Garnaev,et al.  On widths of the Euclidean Ball , 1984 .

[18]  David P. Woodruff,et al.  Lower bounds for sparse recovery , 2010, SODA '10.