Using Answer Set Programming for Solving Boolean Games

Boolean games are a framework for reasoning about the rational behaviour of agents, whose goals are formalized using propositional formulas. They offer an attractive alternative to normal-form games, because they allow for a more intuitive and more compact encoding. Unfortunately, however, there is currently no general, tailor-made method available to compute the equilibria of Boolean games. In this paper, we introduce a method for finding the pure Nash equilibria based on disjunctive answer set programming. Our method is furthermore capable of finding the core elements and the Pareto optimal equilibria, and can easily be modified to support other forms of optimality, thanks to the declarative nature of disjunctive answer set programming. Experimental results clearly demonstrate the effectiveness of the proposed method.