Truncated fractal frequency distribution of element abundance data: A dynamic model for the metasomatic enrichment of base and precious metals

[1]  D. Turcotte Fractals in petrology , 2002 .

[2]  S. M. Burroughs,et al.  The Upper-Truncated Power Law Applied to Earthquake Cumulative Frequency-Magnitude Distributions: Evidence for a Time-Independent Scaling Parameter , 2002 .

[3]  D. Naar,et al.  Statistical self‐similarity of hotspot seamount volumes modeled as self‐similar criticality , 2001 .

[4]  S. M. Burroughs,et al.  UPPER-TRUNCATED POWER LAW DISTRIBUTIONS , 2001 .

[5]  T. Monecke,et al.  Fractal distributions of veins in drill core from the Hellyer VHMS deposit, Australia: constraints on the origin and evolution of the mineralising system , 2001 .

[6]  D. Sornette Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools , 2000 .

[7]  M. Hannington,et al.  Third dimension of a presently forming VMS deposit: TAG hydrothermal mound, Mid-Atlantic Ridge, 26°N , 2000 .

[8]  S. Martínez,et al.  Truncated Pareto Law and Oresize Distribution of Ground Rocks , 1998 .

[9]  Stephen Roberts,et al.  Fractal analysis of Sn-W mineralization from central Iberia; insights into the role of fracture connectivity in the formation of an ore deposit , 1998 .

[10]  D. Sornette,et al.  Stretched exponential distributions in nature and economy: “fat tails” with characteristic scales , 1998, cond-mat/9801293.

[11]  Åke Björck,et al.  Numerical methods for least square problems , 1996 .

[12]  Mark D. Hannington,et al.  Polymetallic massive sulfides at the modern seafloor A review , 1995 .

[13]  S. Brantley,et al.  Power-law vein-thickness distributions and positive feedback in vein growth , 1995 .

[14]  D. Sanderson,et al.  Sampling power-law distributions , 1995 .

[15]  AJ Stolz Geochemistry of the Mount Windsor Volcanics; implications for the tectonic setting of Cambro-Ordovician volcanic-hosted massive sulfide mineralization in northeastern Australia , 1995 .

[16]  C. Allègre,et al.  Scaling laws and geochemical distributions , 1995 .

[17]  D. Huston,et al.  Waterloo and Agincourt prospects, northern Queensland: Contrasting styles of mineralization within the same volcanogenic hydrothermal system , 1995 .

[18]  Stephen Roberts,et al.  A fractal relationship between vein thickness and gold grade in drill core from La Codosera, Spain , 1994 .

[19]  Ross R. Large,et al.  Australian volcanic-hosted massive sulfide deposits; features, styles, and genetic models , 1992 .

[20]  A. Taube,et al.  Stratigraphy, structure, and volcanic-hosted mineralization of the Mount Windsor Subprovince, North Queensland, Australia , 1992 .

[21]  Ronald L. Biegel,et al.  Fractals, fault-gouge, and friction , 1989 .

[22]  John C. Houghton,et al.  Use of the truncated shifted Pareto distribution in assessing size distribution of oil and gas fields , 1988 .

[23]  J. Gemmell Geochemistry of metallic trace elements in fumarolic condensates from Nicaraguan and Costa Rican volcanoes , 1987 .

[24]  R. Large,et al.  A chemical model for the concentration of gold in volcanogenic massive sulphide deposits.(CODES publication 12) , 1987 .

[25]  M. Hannington,et al.  Gold in sea-floor polymetallic sulfide deposits , 1986 .

[26]  Donald L. Turcotte,et al.  A fractal approach to the relationship between ore grade and tonnage , 1986 .

[27]  R. A. Henderson,et al.  Geology of the Mt Windsor subprovince—a lower Palaeozoic volcano‐sedimentary terrane in the northern Tasman orogenic zone , 1986 .

[28]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[29]  Richard F. Link,et al.  Some consequences of applying lognormal theory to pseudolognormal distributions , 1975 .

[30]  A. Oertel Frequency distributions of element concentrations—I. Theoretical aspects , 1969 .

[31]  G. Putman,et al.  Frequency distribution of minor metals in the Rocky Hill stock, Tulare County, California , 1967 .

[32]  J. R. Butler Concentration trends and frequency distribution patterns for elements in igneous rock types , 1964 .

[33]  J. Rogers,et al.  Lognormality of thorium concentrations in the Conway granite , 1963 .

[34]  L. Ahrens Lognormal-type distributions in igneous rocks—IV , 1963 .

[35]  R. Coats,et al.  Distribution of fluorine in unaltered silicic volcanic rocks of the western conterminous United States , 1962 .

[36]  D. Shaw Element distribution laws in geochemistry , 1961 .

[37]  A. B. Vistelius The Skew Frequency Distributions and the Fundamental Law of the Geochemical Processes , 1960, The Journal of Geology.

[38]  Z. V. Jizba Frequency distribution of elements in rocks , 1959 .

[39]  K. Aubrey Frequency-distributions of elements in igneous rocks , 1956 .

[40]  R. L. Miller,et al.  The normal distribution in geochemistry , 1955 .

[41]  F. Chayes The lognormal distribution of the elements: a discussion , 1954 .

[42]  L. Ahrens The lognormal distribution of the elements (2) , 1954 .

[43]  K. Aubrey Frequency Distribution of the Concentrations of Elements in Rocks , 1954, Nature.

[44]  L. Ahrens The lognormal distribution of the elements (A fundamental law of geochemistry and its subsidiary) , 1954 .

[45]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[46]  M. Hannington,et al.  Polymetallic Massive Sulfides and Gold Mineralization at Mid-Ocean Ridges and in Subduction-Related Environments , 2000 .

[47]  J. Edmond,et al.  The Genesis of Hot Spring Deposits on the East Pacific Rise, 21°N , 1983 .

[48]  B. Skinner,et al.  Mineral textures and their bearing on formation of the kuroko orebodies , 1983 .

[49]  C. Lomnitz Global tectonics and earthquake risk , 1974 .

[50]  J. Morgan,et al.  Rhenium and non‐radiogenic osmium in Australian molybdenites and other sulphide minerals by neutron activation analysis , 1968 .

[51]  L. Ahrens Element distributions in specific igneous rocks—VIII , 1966 .

[52]  L. Ahrens Lognormal-type distributions—III , 1957 .

[53]  P. Verhulst Recherches mathématiques sur la loi d’accroissement de la population , 2022, Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Bruxelles.