HBT Modeling

III-V heterojunction bipolar transistors (HBTs) enjoy several advantages over their conventional silicon cousins. These include: (1) a thinner base and lower base resistance which yields higher gain and fmax; (2) high breakdown voltage; (3) low parasitics; (4) high power density. The combination of a thin base (higher fT), low base resistance (higher fmax), and low parasitics in particular make HBTs a suitable choice for high- frequency applications.

[1]  D. Smith,et al.  Compact Electro-thermal Modelling and Simulation of InP HBT Based on the Local Reference Concept , 2006, 2006 European Microwave Integrated Circuits Conference.

[2]  J. Ebers,et al.  Large-Signal Behavior of Junction Transistors , 1954, Proceedings of the IRE.

[3]  R. Doerner,et al.  Consistent modeling of capacitances and transit times of GaAs-based HBTs , 2005, IEEE Transactions on Electron Devices.

[4]  B. Yeats,et al.  Inclusion of topside metal heat spreading in the determination of HBT temperatures by electrical and geometrical methods [GaAs devices] , 1999, GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 21st Annual. Technical Digest 1999 (Cat. No.99CH36369).

[5]  W. J. Kloosterman,et al.  The Mextram Bipolar Transistor Model , 2008 .

[6]  Robert Fox,et al.  Thermal impedance extraction for bipolar transistors , 1996 .

[7]  S. V. Cherepko,et al.  Large-signal modeling and characterization of high-current effects in InGaP/GaAs HBTs , 2002 .

[8]  W. M. Webster On the Variation of Junction-Transistor Current-Amplification Factor with Emitter Current , 1954, Proceedings of the IRE.

[9]  C. Snowden,et al.  Reply to Comment on 'Electro-thermal device and circuit simulation with thermal nonlinearity due to temperature dependent diffusivity' , 2001 .

[10]  S. Bahl,et al.  An accurate, large signal, high frequency model for GaAs HBTs , 1996, GaAs IC Symposium IEEE Gallium Arsenide Integrated Circuit Symposium. 18th Annual Technical Digest 1996.

[11]  J. Gering,et al.  Enhanced high-current VBIC model , 2005, IEEE Transactions on Microwave Theory and Techniques.

[13]  R. Tayrani,et al.  HBT model parameter extractor for SPICE and harmonic balance simulators , 1994, 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No.94CH3389-4).

[14]  S. P. Marsh,et al.  Direct extraction technique to derive the junction temperature of HBT's under high self-heating bias conditions , 2000 .

[15]  D. Ritter,et al.  Reduction of the base-collector capacitance in InP/GaInAs heterojunction bipolar transistors due to electron velocity modulation , 1999 .

[16]  V. d'Alessandro,et al.  Extraction and modeling of self-heating and mutual thermal coupling impedance of bipolar transistors , 2004, IEEE Journal of Solid-State Circuits.

[17]  M. Dunn,et al.  Pulsed measurements and modeling for electro-thermal effects , 1996, Proceedings of the 1996 BIPOLAR/BiCMOS Circuits and Technology Meeting.

[18]  Y. Tkachenko,et al.  A Compact, semi-physically based model predicts accurate aower and linearity of power InGaP HBTs , 2001 .

[19]  V. d'Alessandro,et al.  Fully Automated Electrothermal Simulation Using Standard CAD Tools , 2006, 2006 25th International Conference on Microelectronics.

[20]  M. Rudolph,et al.  Large-signal HBT model requirements to predict nonlinear behaviour , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[21]  Michael B. Steer,et al.  Electrothermal CAD of power devices and circuits with fully physical time-dependent compact thermal modeling of complex nonlinear 3-d systems , 2001 .

[22]  E. Wasige Determining the HBT base-collector elements directly from S-parameter data , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[23]  A. Samelis,et al.  Modeling the bias of the dependence of the base-collector capacitance of power heterojunction bipolar transistors , 1999 .

[24]  R. Havens,et al.  Physically based analytical modeling of base-collector charge, capacitance and transit time of III-V HBT's , 2004, IEEE Compound Semiconductor Integrated Circuit Symposium, 2004..

[25]  William Liu Handbook of III-V Heterojunction Bipolar Transistors , 1998 .

[26]  P. Asbeck,et al.  Large-signal HBT model with improved collector transit time formulation for GaAs and InP technologies , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[27]  Herbert Kroemer,et al.  Theory of a Wide-Gap Emitter for Transistors , 1957, Proceedings of the IRE.

[28]  A. Gupta,et al.  CW measurement of HBT thermal resistance , 1992 .

[29]  J.C.J. Paasschens,et al.  Compact Modeling of GaAs Heterojunction Bipolar Transistors using the new Mextram 3500 model , 2006, 2006 Bipolar/BiCMOS Circuits and Technology Meeting.

[30]  K. Beilenhoff,et al.  Scalable GaInP/GaAs HBT large-signal model , 2000, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017).

[31]  S. Prasad,et al.  Basic expressions and approximations in small-signal parameter extraction for HBT's , 1999 .

[32]  H. Stubing,et al.  A compact physical large-signal model for high-speed bipolar transistors at high current densities—Part I: One-dimensional model , 1987, IEEE Transactions on Electron Devices.

[34]  M. Asaka,et al.  Electron space-charge effects on high-frequency performance of AlGaAs/GaAs HBTs under high-current-density operation , 1988, IEEE Electron Device Letters.

[35]  Ce-Jun Wei,et al.  Direct extraction of equivalent circuit parameters for heterojunction bipolar transistors , 1995 .

[36]  E. J. Prendergast,et al.  A unified circuit model for bipolar transistors including quasi-saturation effects , 1985, IEEE Transactions on Electron Devices.

[37]  H. C. Poon,et al.  An integral charge control model of bipolar transistors , 1970, Bell Syst. Tech. J..

[38]  Matthias Rudolph,et al.  Unified model for collector charge in heterojunction bipolar transistors , 2002 .

[39]  C. C. McAndrew,et al.  VBIC95, the vertical bipolar inter-company model , 1996, IEEE J. Solid State Circuits.

[40]  Peter M. Asbeck,et al.  Determination of junction temperature in AlGaAs/GaAs heterojunction bipolar transistors by electrical measurement , 1992 .

[41]  L. Damkilde,et al.  Comments on 'Electro-thermal device and circuit simulation with thermal nonlinearity due to temperature dependent diffusivity' , 2001 .

[42]  J.C.M. Hwang,et al.  VBIC model applicability and extraction procedure for InGap/GaAs HBT , 2001, APMC 2001. 2001 Asia-Pacific Microwave Conference (Cat. No.01TH8577).

[43]  Mau-Chung Frank Chang,et al.  Thermal design and simulation of bipolar integrated circuits , 1992 .

[44]  S. Tiwari,et al.  Analysis of the operation of GaAlAs/GaAs HBTs , 1989 .

[45]  John D. Cressler,et al.  Bipolar Transistors , 2007 .

[46]  H.C. de Graaff,et al.  Experience with the new compact MEXTRAM model for bipolar transistors , 1989, Proceedings of the Bipolar Circuits and Technology Meeting.

[47]  A. Santarelli,et al.  A simple technique for measuring the thermal impedance and the thermal resistance of HBTs , 2005, European Gallium Arsenide and Other Semiconductor Application Symposium, GAAS 2005.

[48]  C. C. McAndrew,et al.  SiGe HBT self-heating modeling and characterization from AC data , 2002, Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting.

[49]  S.V. Cherepko,et al.  Improved large-signal model and model extraction procedure for InGaP/GaAs HBTs under high-current operations , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[50]  C. Snowden,et al.  Electro-thermal device and circuit simulation with thermal nonlinearity due to temperature dependent diffusivity , 2000 .

[51]  S. Maas,et al.  Why I hate base resistance [bipolar transistors] , 2004, IEEE Microwave Magazine.

[52]  K. Ng,et al.  The Physics of Semiconductor Devices , 2019, Springer Proceedings in Physics.

[53]  J. Early Effects of Space-Charge Layer Widening in Junction Transistors , 1952, Proceedings of the IRE.

[54]  J. Gering,et al.  Transistor model validation through 50 Ohm, vector network analyzer power sweeps , 2007, 2007 70th ARFTG Microwave Measurement Conference (ARFTG).

[55]  M. Schroter,et al.  A compact physical large-signal model for high-speed bipolar transistors at high current densities—Part II: Two-dimensional model and experimental results , 1987, IEEE Transactions on Electron Devices.

[57]  C. T. Kirk,et al.  A theory of transistor cutoff frequency (fT) falloff at high current densities , 1962, IRE Transactions on Electron Devices.

[58]  Wen-Chau Liu,et al.  Measurement of junction temperature of an AlGaAs/GaAs heterojunction bipolar transistor operating at large power densities , 1995 .

[59]  J. Choma,et al.  Large signal modeling of HBT's including self-heating and transit time effects , 1992 .

[60]  P. M. Asbeck,et al.  Linearity characteristics of GaAs HBTs and the influence of collector design , 2000 .

[61]  M. G. Adlerstein,et al.  Thermal resistance measurements for AlGaAs/GaAs heterojunction bipolar transistors , 1991 .