Evaluation of Temporal Datasets via Interval Temporal Logic Model Checking

The problem of temporal dataset evaluation consists in establishing to what extent a set of temporal data (histories) complies with a given temporal condition. It presents a strong resemblance with the problem of model checking enhanced with the ability of rating the compliance degree of a model against a formula. In this paper, we solve the temporal dataset evaluation problem by suitably combining the outcomes of model checking an interval temporal logic formula against sets of histories (finite interval models), possibly taking into account domain-dependent measures/criteria, like, for instance, sensitivity, specificity, and accuracy. From a technical point of view, the main contribution of the paper is a (deterministic) polynomial time algorithm for interval temporal logic model checking over finite interval models. To the best of our knowledge, this is the first application of a (truly) interval temporal logic model checking in the area of temporal databases and data mining rather than in the formal verification setting.

[1]  金田 重郎,et al.  C4.5: Programs for Machine Learning (書評) , 1995 .

[2]  Valentin Goranko,et al.  Model theory of modal logic , 2007, Handbook of Modal Logic.

[3]  Alessio Lomuscio,et al.  Model Checking Multi-Agent Systems against Epistemic HS Specifications with Regular Expressions , 2016, KR.

[4]  Guido Sciavicco,et al.  On the Expressiveness of the Interval Logic of Allen's Relations Over Finite and Discrete Linear Orders , 2014, JELIA.

[5]  Jan Chomicki,et al.  Querying ATSQL databases with temporal logic , 1996, TODS.

[6]  Richard T. Snodgrass,et al.  Capturing Telic/Atelic Temporal Data Semantics: Generalizing Conventional Conceptual Models , 2014, IEEE Transactions on Knowledge and Data Engineering.

[7]  Krishna G. Kulkarni,et al.  Temporal features in SQL:2011 , 2012, SGMD.

[8]  Alessio Lomuscio,et al.  An Epistemic Halpern-Shoham Logic , 2013, IJCAI.

[9]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[10]  Angelo Montanari,et al.  A Model Checking Procedure for Interval Temporal Logics based on Track Representatives , 2015, CSL.

[11]  Angelo Montanari,et al.  Model Checking the Logic of Allen's Relations Meets and Started-by is PNP-Complete , 2016, GandALF.

[12]  Angelo Montanari,et al.  Data Models with Multiple Temporal Dimensions: Completing the Picture , 2001, CAiSE.

[13]  Robin Gras,et al.  Rule Extraction from Random Forest: the RF+HC Methods , 2015, Canadian Conference on AI.

[14]  S. Cessie,et al.  Ridge Estimators in Logistic Regression , 1992 .

[15]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[16]  Ricardo Tanscheit,et al.  Fuzzy rules extraction from support vector machines for multi-class classification , 2012, Neural Computing and Applications.

[17]  Y. Hayashi,et al.  Use of the recursive-rule extraction algorithm with continuous attributes to improve diagnostic accuracy in thyroid disease , 2015 .

[18]  Philippe Schnoebelen,et al.  Model Checking a Path , 2003, CONCUR.

[19]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[20]  Yoav Shoham,et al.  A propositional modal logic of time intervals , 1991, JACM.

[21]  Philippe Schnoebelen,et al.  The Complexity of Temporal Logic Model Checking , 2002, Advances in Modal Logic.

[22]  Moshe Y. Vardi Model Checking for Database Theoreticians , 2005, ICDT.

[23]  Angelo Montanari,et al.  Checking interval properties of computations , 2014, Acta Informatica.

[24]  Alessio Lomuscio,et al.  Decidability of model checking multi-agent systems against a class of EHS specifications , 2014, ECAI.

[25]  Richard T. Snodgrass,et al.  The TSQL2 Temporal Query Language , 1995 .

[26]  Valentin Goranko,et al.  Two-sorted Point-Interval Temporal Logics , 2011, M4M/LAMAS.

[27]  Pietro Sala,et al.  Mining approximate interval-based temporal dependencies , 2015, Acta Informatica.

[28]  Angelo Montanari,et al.  Interval vs. Point Temporal Logic Model Checking , 2017, ACM Trans. Comput. Log..

[29]  Sushil Jajodia,et al.  Temporal Databases: Theory, Design, and Implementation , 1993 .

[30]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[31]  Ramez Elmasri,et al.  TSQL2 language specification , 1994, SGMD.

[32]  Christian S. Jensen,et al.  How Would You Like to Aggregate Your Temporal Data? , 2006, Thirteenth International Symposium on Temporal Representation and Reasoning (TIME'06).

[33]  Fernando Jiménez,et al.  Multi-objective evolutionary algorithms for fuzzy classification in survival prediction , 2014, Artif. Intell. Medicine.

[34]  Amir Pnueli The Temporal Semantics of Concurrent Programs , 1981, Theor. Comput. Sci..

[35]  Laura Giordano,et al.  Adopting model checking techniques for clinical guidelines verification , 2010, Artif. Intell. Medicine.

[36]  Elisa Quintarelli,et al.  Model-Checking Based Data Retrieval , 2004, Lecture Notes in Computer Science.

[37]  Angelo Montanari,et al.  Model Checking Well-Behaved Fragments of HS: The (Almost) Final Picture , 2016, KR.

[38]  Angelo Montanari,et al.  Interval Temporal Logic Model Checking: The Border Between Good and Bad HS Fragments , 2016, IJCAR.

[39]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[40]  Angelo Montanari,et al.  Complexity of ITL Model Checking: Some Well-Behaved Fragments of the Interval Logic HS , 2015, 2015 22nd International Symposium on Temporal Representation and Reasoning (TIME).