Time-dependent mean field theory for quench dynamics in correlated electron systems.

A simple and very flexible variational approach to the out-of-equilibrium quantum dynamics in strongly correlated electron systems is introduced through a time-dependent Gutzwiller wave function. As an application, we study the simple case of a sudden change of the interaction in the fermionic Hubbard model and find at the mean-field level an extremely rich behavior. In particular, a dynamical transition between small and large quantum quench regimes is found to occur at half-filling, in accordance with the analysis of Eckstein, Phys. Rev. Lett. 103, 056403 (2009)10.1103/PhysRevLett.103.056403, obtained by dynamical mean-field theory, that turns into a crossover at any finite doping.