An Asymptotic Parallel-in-Time Method for Highly Oscillatory PDEs

We present a new time-stepping algorithm for nonlinear PDEs that exhibit scale separation in time of a highly oscillatory nature. The algorithm combines the parareal method---a parallel-in-time scheme introduced in [J.-L. Lions, Y. Maday, and G. Turinici, C. R. Acad. Sci. Paris Ser. I Math., 332 (2001), pp. 661--668]---with techniques from the heterogeneous multiscale method (cf. [W. E and B. Engquist, Notices Amer. Math. Soc., 50 (2003), pp. 1062--1070]), which make use of the slow asymptotic structure of the equations [A. J. Majda and P. Embid, Theoret. Comput. Fluid Dyn., 11 (1998), pp. 155--169]. We present error bounds, based on the analysis in [M. J. Gander and E. Hairer, in Domain Decomposition Methods in Science and Engineering XVII, Springer, Berlin, 2008, pp. 45--56] and [G. Bal, in Domain Decomposition Methods in Science and Engineering, Springer, Berlin, 2005, pp. 425--432], that demonstrate convergence of the method. A complexity analysis also demonstrates that the parallel speedup increases ...

[1]  J. D. Lawson Generalized Runge-Kutta Processes for Stable Systems with Large Lipschitz Constants , 1967 .

[2]  Yvon Maday Parareal in time algorithm for kinetic systems based on model reduction , 2007 .

[3]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[4]  Guillaume Bal,et al.  On the Convergence and the Stability of the Parareal Algorithm to Solve Partial Differential Equations , 2005 .

[5]  Andrew J. Majda,et al.  Averaging over Fast Gravity Waves for Geophysical Flows with Unbalanced Initial Data , 1998 .

[6]  Martin J. Gander,et al.  Nonlinear Convergence Analysis for the Parareal Algorithm , 2008 .

[7]  Martin J. Gander,et al.  Analysis of the Parareal Algorithm Applied to Hyperbolic Problems Using Characteristics , 2008 .

[8]  Xiaoying Dai,et al.  Stable Parareal in Time Method for First- and Second-Order Hyperbolic Systems , 2012, SIAM J. Sci. Comput..

[9]  Roger Temam,et al.  Renormalization group method applied to the primitive equations , 2005 .

[10]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[11]  Stefan Engblom,et al.  Parallel in Time Simulation of Multiscale Stochastic Chemical Kinetics , 2008, Multiscale Model. Simul..

[12]  Leslie M. Smith,et al.  On near resonances and symmetry breaking in forced rotating flows at moderate Rossby number , 2005, Journal of Fluid Mechanics.

[13]  Gil Ariel,et al.  Multiscale Computations for Highly Oscillatory Problems , 2009, CSE 2009.

[14]  Yvon Maday,et al.  A Parareal in Time Semi-implicit Approximation of the Navier-Stokes Equations , 2005 .

[15]  Giovanni Samaey,et al.  A Micro-Macro Parareal Algorithm: Application to Singularly Perturbed Ordinary Differential Equations , 2012, SIAM J. Sci. Comput..

[16]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[17]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[18]  J. Lions,et al.  Résolution d'EDP par un schéma en temps « pararéel » , 2001 .

[19]  Charbel Farhat,et al.  Time‐decomposed parallel time‐integrators: theory and feasibility studies for fluid, structure, and fluid–structure applications , 2003 .

[20]  Len G. Margolin,et al.  On Simulating Flows with Multiple Time Scales Using a Method of Averages , 1997 .

[21]  Björn Engquist,et al.  Heterogeneous multiscale methods for stiff ordinary differential equations , 2005, Math. Comput..

[22]  Björn Engquist,et al.  A multiscale method for highly oscillatory ordinary differential equations with resonance , 2008, Math. Comput..

[23]  Donald A. Jones,et al.  A Numerical Study of an Operator Splitting Method for Rotating Flows with Large Ageostrophic Initial Data , 1999 .

[24]  The ParaReal Algorithm , 2004 .

[25]  Beth A. Wingate,et al.  Low Rossby limiting dynamics for stably stratified flow with finite Froude number , 2011, Journal of Fluid Mechanics.

[26]  J. Charney ON A PHYSICAL BASIS FOR NUMERICAL PREDICTION OF LARGE-SCALE MOTIONS IN THE ATMOSPHERE , 1949 .

[27]  E Weinan,et al.  Multi-scale Modeling and Computation , 2003 .

[28]  Yvon Maday,et al.  Parallel in time algorithms for quantum control: Parareal time discretization scheme , 2003 .

[29]  Jr. R. E. O’Malley Averaging Methods in Nonlinear Dynamical Systems. (J. A. Sanders and F. Verhulst) , 1987 .

[30]  S. Kim,et al.  A Multiscale Method for Highly Oscillatory Dynamical Systems Using a Poincaré Map Type Technique , 2013, J. Sci. Comput..

[31]  S. Schochet Fast Singular Limits of Hyperbolic PDEs , 1994 .

[32]  Philippe Chartier,et al.  An Averaging Technique for Highly Oscillatory Hamiltonian Problems , 2009, SIAM J. Numer. Anal..

[33]  Sebastian Reich,et al.  Smoothed dynamics of highly oscillatory Hamiltonian systems , 1995 .

[34]  J. G. Charney,et al.  On the Scale of Atmospheric Motions , 1990 .

[35]  E. Weinan Analysis of the heterogeneous multiscale method for ordinary differential equations , 2003 .

[36]  Y. Maday,et al.  Symmetric parareal algorithms for Hamiltonian systems , 2010, 1011.6222.