Multiple-order rogue waves for the generalized (2+1)-dimensional Kadomtsev-Petviashvili equation

[1]  Bo Tian,et al.  Dark breather waves, dark lump waves and lump wave-soliton interactions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in a fluid , 2019, Comput. Math. Appl..

[2]  Fabio Baronio,et al.  Optical Kerr Spatiotemporal Dark-Lump Dynamics of Hydrodynamic Origin. , 2016, Physical review letters.

[3]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions for a (3 + 1)-dimensional generalized KP equation , 2012 .

[4]  Yufeng Zhang,et al.  Families of exact solutions of the generalized (3+1)-dimensional nonlinear-wave equation , 2018, Modern Physics Letters B.

[5]  Wenxiu Ma,et al.  Lump solutions to the Kadomtsev–Petviashvili equation , 2015 .

[6]  Shihua Chen,et al.  Spatiotemporal optical dark X solitary waves. , 2016, Optics letters.

[7]  Optical solitons with power law nonlinearity using Lie group analysis , 2009 .

[8]  Huanhe Dong,et al.  Rational solutions and lump solutions to the generalized (3+1)-dimensional Shallow Water-like equation , 2017, Comput. Math. Appl..

[9]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[10]  H. Triki,et al.  Solitary wave solutions for high dispersive cubic-quintic nonlinear Schrödinger equation , 2009 .

[11]  Vladimir E. Zakharov,et al.  Stability of periodic waves of finite amplitude on the surface of a deep fluid , 1968 .

[12]  J. Soto-Crespo,et al.  Extreme waves that appear from nowhere: On the nature of rogue waves , 2009 .

[13]  L. Draper ‘FREAK’ OCEAN WAVES , 1966 .

[14]  Wen-Xiu Ma,et al.  Bäcklund transformation, multiple wave solutions and lump solutions to a (3 + 1)-dimensional nonlinear evolution equation , 2017, Nonlinear Dynamics.

[15]  Yufeng Zhang,et al.  Lump waves, solitary waves and interaction phenomena to the (2 + 1)-dimensional Konopelchenko–Dubrovsky equation , 2019, Physics Letters A.

[16]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[17]  Xu You-shen,et al.  New Optical Solitons in High-Order Dispersive Cubic-Quintic Nonlinear Schrödinger Equation , 2004 .

[18]  Bo Tian,et al.  Darboux transformation and soliton solutions for the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics , 2012 .

[19]  P. Guha,et al.  On a reduction of the generalized Darboux–Halphen system , 2017, 1710.00158.

[20]  T. Brooke Benjamin,et al.  The disintegration of wave trains on deep water Part 1. Theory , 1967, Journal of Fluid Mechanics.

[21]  Lei Liu,et al.  Rogue waves for a variable-coefficient Kadomtsev-Petviashvili equation in fluid mechanics , 2018, Comput. Math. Appl..

[22]  Zhaqilao A symbolic computation approach to constructing rogue waves with a controllable center in the nonlinear systems , 2018, Comput. Math. Appl..

[23]  D. H. Peregrine,et al.  Water waves, nonlinear Schrödinger equations and their solutions , 1983, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[24]  N. Akhmediev,et al.  Waves that appear from nowhere and disappear without a trace , 2009 .

[25]  Shou-Fu Tian,et al.  Characteristics of the solitary waves and rogue waves with interaction phenomena in a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation , 2017, Appl. Math. Lett..

[26]  Yong Chen,et al.  Rogue wave and a pair of resonance stripe solitons to KP equation , 2018, Comput. Math. Appl..