Flow‐suppressed hyperpolarized 13C chemical shift imaging using velocity‐optimized bipolar gradient in mouse liver tumors at 9.4 T

To optimize and investigate the influence of bipolar gradients for flow suppression in metabolic quantification of hyperpolarized 13C chemical shift imaging (CSI) of mouse liver at 9.4 T.

[1]  Ilwoo Park,et al.  Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors. , 2010, Neuro-oncology.

[2]  John D. Enderle,et al.  Introduction to Biomedical Engineering , 1999 .

[3]  O. Warburg Über den Stoffwechsel der Carcinomzelle , 1924, Naturwissenschaften.

[4]  K. Kono,et al.  The role of diffusion-weighted imaging in patients with brain tumors. , 2001, AJNR. American journal of neuroradiology.

[5]  R R Edelman,et al.  Extracranial carotid arteries: evaluation with "black blood" MR angiography. , 1990, Radiology.

[6]  J S Petersson,et al.  Molecular imaging using hyperpolarized 13C. , 2003, The British journal of radiology.

[7]  Kevin M. Johnson,et al.  Application of flow sensitive gradients for improved measures of metabolism using hyperpolarized 13c MRI , 2016, Magnetic resonance in medicine.

[8]  C. James,et al.  Detection of early response to temozolomide treatment in brain tumors using hyperpolarized 13C MR metabolic imaging , 2011, Journal of magnetic resonance imaging : JMRI.

[9]  Adolf Pfefferbaum,et al.  Application of double spin echo spiral chemical shift imaging to rapid metabolic mapping of hyperpolarized [1-¹³C]-pyruvate. , 2011, Journal of magnetic resonance.

[10]  Jan Wolber,et al.  Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy , 2007, Nature Medicine.

[11]  F. Jiru Introduction to post-processing techniques. , 2008, European journal of radiology.

[12]  D. Weinberger,et al.  Correction for vascular artifacts in cerebral blood flow values measured by using arterial spin tagging techniques , 1997, Magnetic resonance in medicine.

[13]  Xiaoguang Sun,et al.  Lactate dehydrogenase a in cancer: A promising target for diagnosis and therapy , 2013, IUBMB life.

[14]  Adolf Pfefferbaum,et al.  T2 relaxation times of 13C metabolites in a rat hepatocellular carcinoma model measured in vivo using 13C‐MRS of hyperpolarized [1‐13C]pyruvate , 2010, NMR in biomedicine.

[15]  Monique Bernard,et al.  Myocardial blood flow mapping in mice using high‐resolution spin labeling magnetic resonance imaging: Influence of ketamine/xylazine and isoflurane anesthesia , 2005, Magnetic resonance in medicine.

[16]  J. Mo,et al.  Baseline correction by improved iterative polynomial fitting with automatic threshold , 2006 .

[17]  J. Franconi,et al.  In vivo MR angiography and velocity measurement in mice coronary arteries at 9.4 T: assessment of coronary flow velocity reserve. , 2010, Radiology.

[18]  岩城 隆昌,et al.  マウスの断面解剖アトラス = A color atlas of sectional anatomy of the mouse , 2002 .

[19]  S. Altekruse,et al.  Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[20]  G. S. Makin,et al.  Velocity of Blood Flow in Normal Human Venae Cavae , 1968 .

[21]  G. Radda,et al.  In vivo assessment of pyruvate dehydrogenase flux in the heart using hyperpolarized carbon-13 magnetic resonance , 2008, Proceedings of the National Academy of Sciences.

[22]  J Kurhanewicz,et al.  DNP-Hyperpolarized 13C Magnetic Resonance Metabolic Imaging for Cancer Applications , 2008, Applied magnetic resonance.

[23]  James B. Mitchell,et al.  Detecting response of rat C6 glioma tumors to radiotherapy using hyperpolarized [1‐13C]pyruvate and 13C magnetic resonance spectroscopic imaging , 2011, Magnetic resonance in medicine.

[24]  D. Vigneron,et al.  Design of spectral-spatial outer volume suppression RF pulses for tissue specific metabolic characterization with hyperpolarized 13C pyruvate. , 2009, Journal of magnetic resonance.

[25]  Patrick Segers,et al.  A 1D model of the arterial circulation in mice. , 2015, ALTEX.

[26]  S. Burgess,et al.  Flux through hepatic pyruvate carboxylase and phosphoenolpyruvate carboxykinase detected by hyperpolarized 13C magnetic resonance , 2011, Proceedings of the National Academy of Sciences.

[27]  Dong-Hyun Kim,et al.  An indirect method for in vivo T2 mapping of [1‐13C] pyruvate using hyperpolarized 13C CSI , 2017, NMR in biomedicine.

[28]  S J Kohler,et al.  In vivo 13carbon metabolic imaging at 3T with hyperpolarized 13C‐1‐pyruvate , 2007, Magnetic resonance in medicine.

[29]  Wilson Fong Handbook of MRI Pulse Sequences , 2005 .

[30]  D. Ku BLOOD FLOW IN ARTERIES , 1997 .

[31]  F. Gallagher,et al.  13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C‐labeled glutamine , 2008, Magnetic resonance in medicine.

[32]  Matthew D. Robson,et al.  Cardiac perfusion imaging using hyperpolarized 13c urea using flow sensitizing gradients , 2015, Magnetic resonance in medicine.

[33]  M. Thaning,et al.  Real-time metabolic imaging. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Y. Wang,et al.  Blood oxygen saturation assessment in vivo using T2 * estimation , 1998, Magnetic resonance in medicine.

[35]  Jeremy W. Gordon,et al.  In Vivo Imaging and Spectroscopy of Dynamic Metabolism Using Simultaneous $^{13}$C and $^1$H MRI , 2012, IEEE Transactions on Biomedical Engineering.

[36]  Jan Henrik Ardenkjaer-Larsen,et al.  Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. , 2006, Cancer research.

[37]  Albert P. Chen,et al.  Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. , 2008, Cancer research.

[38]  S. Imbeaud,et al.  Tissue metabolomics of hepatocellular carcinoma: Tumor energy metabolism and the role of transcriptomic classification , 2013, Hepatology.

[39]  Dong-Hyun Kim,et al.  Metabolite-selective hyperpolarized (13)C imaging using extended chemical shift displacement at 9.4T. , 2016, Magnetic resonance imaging.

[40]  J. Ardenkjær-Larsen,et al.  Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[41]  P A Bottomley,et al.  RF magnetic field penetration, phase shift and power dissipation in biological tissue: implications for NMR imaging. , 1978, Physics in medicine and biology.

[42]  Peder E. Z. Larson,et al.  Generating Super Stimulated-Echoes in MRI and Their Application to Hyperpolarized C-13 Diffusion Metabolic Imaging , 2012, IEEE Transactions on Medical Imaging.

[43]  Adam B Kerr,et al.  Quantitative measurement of cancer metabolism using stimulated echo hyperpolarized carbon‐13 MRS , 2014, Magnetic resonance in medicine.

[44]  John G. Sled,et al.  Three-dimensional cerebral vasculature of the CBA mouse brain: A magnetic resonance imaging and micro computed tomography study , 2007, NeuroImage.