A monotone multigrid solver for two body contact problems in biomechanics

The purpose of the paper is to apply monotone multigrid methods to static and dynamic biomechanical contact problems. In space, a finite element method involving a mortar discretization of the contact conditions is used. In time, a new contact-stabilized Newmark scheme is presented. Numerical experiments for a two body Hertzian contact problem and a biomechanical application are reported.

[1]  H. Rentz-Reichert,et al.  UG – A flexible software toolbox for solving partial differential equations , 1997 .

[2]  M J Ackerman,et al.  The Visible Human Project , 1998, Proc. IEEE.

[3]  Rolf Krause,et al.  Monotone Multigrid Methods on Nonmatching Grids for Nonlinear Multibody Contact Problems , 2003, SIAM J. Sci. Comput..

[4]  Barbara Wohlmuth,et al.  A new dual mortar method for curved interfaces: 2D elasticity , 2005 .

[5]  William R Taylor,et al.  Tibio-femoral joint contact forces in sheep. , 2006, Journal of biomechanics.

[6]  M. Ulbrich Nonsmooth Newton-like Methods for Variational Inequalities and Constrained Optimization Problems in , 2001 .

[7]  Andreas Dedner,et al.  The Distributed and Unified Numerics Environment (DUNE) , 2006 .

[8]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[9]  R. Hoppe Multigrid Algorithms for Variational Inequalities , 1987 .

[10]  W. Hackbusch,et al.  On multi-grid methods for variational inequalities , 1983 .

[11]  R. Kornhuber,et al.  Adaptive multigrid methods for Signorini’s problem in linear elasticity , 2001 .

[12]  Benjamin J Fregly,et al.  Multibody dynamic simulation of knee contact mechanics. , 2004, Medical engineering & physics.

[13]  Christian Hellmich,et al.  Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? , 2004, Biomechanics and modeling in mechanobiology.

[14]  I. Ekeland,et al.  10. Relaxation of Non-Convex Variational Problems (II) , 1999 .

[15]  R. Krause,et al.  Automatic construction of boundary parametrizations for geometric multigrid solvers , 2006 .

[16]  M. Géradin,et al.  Flexible Multibody Dynamics: A Finite Element Approach , 2001 .

[17]  F. Bornemann,et al.  Adaptive multivlevel methods in three space dimensions , 1993 .

[18]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[19]  Erwin Keeve,et al.  Biomechanic-based simulation of knee dynamics , 1999, Proceedings of the First Joint BMES/EMBS Conference. 1999 IEEE Engineering in Medicine and Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society (Cat. N.

[20]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[21]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[22]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[23]  R. Glowinski Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .

[24]  J. Haslinger,et al.  Solution of Variational Inequalities in Mechanics , 1988 .

[25]  J. Mandel A multilevel iterative method for symmetric, positive definite linear complementarity problems , 1984 .

[26]  R. Krause,et al.  Fast Solving of Contact Problems on Complicated Geometries , 2005 .

[27]  Jacques-Louis Lions,et al.  Nonlinear partial differential equations and their applications , 1998 .

[28]  Anthony T. Patera,et al.  Domain Decomposition by the Mortar Element Method , 1993 .

[29]  Ivan Hlaváček,et al.  Contact between elastic bodies. I. Continuous problems , 1980 .

[30]  Karl Kunisch,et al.  Generalized Newton methods for the 2D-Signorini contact problem with friction in function space , 2005 .

[31]  J. Z. Zhu,et al.  The finite element method , 1977 .

[32]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[33]  Jürgen Bey,et al.  Finite-Volumen- und Mehrgitter-Verfahren für elliptische Randwertprobleme , 1998 .

[34]  Peter Deuflhard,et al.  A contact‐stabilized Newmark method for dynamical contact problems , 2008 .

[35]  J. Périaux,et al.  Domain Decomposition Methods in Science and Engineering , 1994 .

[36]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..

[37]  H. Yserentant,et al.  Multilevel methods for elliptic problems on domains not resolved by the coarse grid , 1994 .

[38]  J. Marsden,et al.  Time‐discretized variational formulation of non‐smooth frictional contact , 2002 .

[39]  Rolf Krause From inexact active set strategies to nonlinear multigrid methods , 2006 .

[40]  H. Weinert Ekeland, I. / Temam, R., Convex Analysis and Variational Problems. Amsterdam‐Oxford. North‐Holland Publ. Company. 1976. IX, 402 S., Dfl. 85.00. US $ 29.50 (SMAA 1) , 1979 .

[41]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[42]  R. Kornhuber Monotone multigrid methods for elliptic variational inequalities I , 1994 .

[43]  D. Kinderlehrer,et al.  Existence, uniqueness, and regularity results for the two-body contact problem , 1987 .

[44]  H. Yserentant Old and new convergence proofs for multigrid methods , 1993, Acta Numerica.

[45]  Christian Wieners,et al.  Criteria for the approximation property for multigrid methods in nonnested spaces , 2004, Math. Comput..

[46]  J. Oden,et al.  Contact problems in elasticity , 1988 .

[47]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[48]  W. Han,et al.  Contact problems in elasticity , 2002 .