Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells

[1]  Tabatabayi Yazdi PHYSICOCHEMICAL PROPERTIES , 1981 .

[2]  Urs O. Häfeli,et al.  Scientific and clinical applications of magnetic carriers , 1997 .

[3]  J A Frank,et al.  Synthesis and relaxometry of high‐generation (G = 5, 7, 9, and 10) PAMAM dendrimer‐DOTA‐gadolinium chelates , 1999, Journal of magnetic resonance imaging : JMRI.

[4]  S. Mckercher,et al.  Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. , 2000, Science.

[5]  R. Crooks,et al.  Homogeneous Hydrogenation Catalysis with Monodisperse, Dendrimer-Encapsulated Pd and Pt Nanoparticles. , 1999, Angewandte Chemie.

[6]  R Weissleder,et al.  High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. , 1999, Bioconjugate chemistry.

[7]  Jeff W. M. Bulte,et al.  Synthesis and Characterization of Soluble Iron Oxide−Dendrimer Composites , 2001 .

[8]  R. Brooks,et al.  Dysprosium-DOTA-PAMAM dendrimers as macromolecular T2 contrast agents. Preparation and relaxometry. , 1998, Investigative radiology.

[9]  J. Thomson,et al.  Embryonic stem cell lines derived from human blastocysts. , 1998, Science.

[10]  D. Muir,et al.  CG‐4, A new bipotential glial cell line from rat brain, is capable of differentiating in vitro into either mature oligodendrocytes or type‐2 astrocytes , 1992, Journal of neuroscience research.

[11]  Bradley D. Smith,et al.  High-generation polycationic dendrimers are unusually effective at disrupting anionic vesicles: membrane bending model. , 2000, Bioconjugate chemistry.

[12]  P C Lauterbur,et al.  Dendrimer‐based metal chelates: A new class of magnetic resonance imaging contrast agents , 1994, Magnetic resonance in medicine.

[13]  N. Hylton,et al.  Evaluation of the effects of intravascular MR contrast media (gadolinium dendrimer) on 3D time of flight magnetic resonance angiography of the body , 1996, Journal of magnetic resonance imaging : JMRI.

[14]  R. Brooks,et al.  Relaxometry and magnetometry of the MR contrast agent MION‐46L , 1999, Magnetic resonance in medicine.

[15]  L. H. Bryant,et al.  Molecular and Cellular Magnetic Resonance Contrast Agents , 2001 .

[16]  H. Blau,et al.  From marrow to brain: expression of neuronal phenotypes in adult mice. , 2000, Science.

[17]  R. Juliano,et al.  Characterization of complexes of oligonucleotides with polyamidoamine starburst dendrimers and effects on intracellular delivery. , 1997, Journal of pharmaceutical sciences.

[18]  F Demsar,et al.  Angiographic properties of Gd-DTPA-24-cascade-polymer--a new macromolecular MR contrast agent. , 1995, European journal of radiology.

[19]  J. Axelman,et al.  "Derivation of Pluripotent Stem Cells from Cultured Human Primordial Germ Cells" (1998), by John Gearhart et al. , 2012 .

[20]  I. Duncan,et al.  Generation of oligodendroglial progenitors from neural stem cells , 1998, Journal of neurocytology.

[21]  Ralph Weissleder,et al.  Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells , 2000, Nature Biotechnology.

[22]  J A Frank,et al.  Hepatic hemosiderosis in non‐human primates: Quantification of liver iron using different field strengths , 1997, Magnetic resonance in medicine.

[23]  G. Adam,et al.  Gd‐DTPA‐cascade‐polymer: Potential blood pool contrast agent for MR imaging , 1994, Journal of magnetic resonance imaging : JMRI.

[24]  J A Frank,et al.  Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[25]  F. Szoka,et al.  In vitro gene delivery by degraded polyamidoamine dendrimers. , 1996, Bioconjugate chemistry.

[26]  R. McKay,et al.  Embryonic stem cell-derived glial precursors: a source of myelinating transplants. , 1999, Science.

[27]  K. Mechtler,et al.  Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. , 1996, Human gene therapy.

[28]  R Weissleder,et al.  Macrocyclic chelators with paramagnetic cations are internalized into mammalian cells via a HIV-tat derived membrane translocation peptide. , 2000, Bioconjugate chemistry.

[29]  R Weissleder,et al.  Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. , 2001, Journal of immunological methods.

[30]  J. Baker,et al.  Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Richard M. Crooks,et al.  Preparation of Cu Nanoclusters within Dendrimer Templates , 1998 .

[32]  J. Mcdonald,et al.  Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord , 1999, Nature Medicine.

[33]  I. Duncan,et al.  Insertion of a Retrotransposon in Mbp Disrupts mRNA Splicing and Myelination in a New Mutant Rat , 1999, The Journal of Neuroscience.

[34]  R Weissleder,et al.  Monocrystalline iron oxide nanocompounds (MION): Physicochemical properties , 1993, Magnetic resonance in medicine.

[35]  Lajos P. Balogh,et al.  Poly(Amidoamine) Dendrimer-Templated Nanocomposites. 1. Synthesis of Zerovalent Copper Nanoclusters , 1998 .

[36]  D. Yaffe,et al.  Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle , 1977, Nature.

[37]  J. Bulte,et al.  Magnetic Nanoparticles as Contrast Agents for MR Imaging , 1997 .