Low-Rank Eigenvector Compression of Posterior Covariance Matrices for Linear Gaussian Inverse Problems

We consider the problem of efficient computations of the covariance matrix of the posterior probability density for linear Gaussian Bayesian inverse problems. When the probability density of the no...

[1]  Daniel Kressner,et al.  Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems , 2011, SIAM J. Matrix Anal. Appl..

[2]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[3]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[4]  Daniel Kressner,et al.  Krylov Subspace Methods for Linear Systems with Tensor Product Structure , 2010, SIAM J. Matrix Anal. Appl..

[5]  R. Herzog,et al.  Algorithms for PDE‐constrained optimization , 2010 .

[6]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[7]  Alfio Borzì,et al.  Multigrid methods for parabolic distributed optimal control problems , 2003 .

[8]  Ivan P. Gavrilyuk,et al.  Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..

[9]  Tiangang Cui,et al.  Goal-Oriented Optimal Approximations of Bayesian Linear Inverse Problems , 2016, SIAM J. Sci. Comput..

[10]  Martin Stoll,et al.  Regularization-Robust Preconditioners for Time-Dependent PDE-Constrained Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..

[11]  Ivan V. Oseledets,et al.  Solution of Linear Systems and Matrix Inversion in the TT-Format , 2012, SIAM J. Sci. Comput..

[12]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[13]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[14]  Martin B. van Gijzen,et al.  IDR(s): A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations , 2008, SIAM J. Sci. Comput..

[15]  James Martin,et al.  A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion , 2013, SIAM J. Sci. Comput..

[16]  S. Dolgov TT-GMRES: solution to a linear system in the structured tensor format , 2012, 1206.5512.

[17]  S. V. Dolgov,et al.  ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .

[18]  Peter Benner,et al.  Computing real low-rank solutions of Sylvester equations by the factored ADI method , 2014, Comput. Math. Appl..

[19]  Long Chen INTRODUCTION TO MULTIGRID METHODS , 2005 .

[20]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[21]  Martin Stoll,et al.  A Low-Rank in Time Approach to PDE-Constrained Optimization , 2015, SIAM J. Sci. Comput..

[22]  V. G. Sigillito,et al.  Eigenvalues of the Laplacian in Two Dimensions , 1984 .

[23]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[24]  Michele Benzi,et al.  A preconditioning technique for a class of PDE-constrained optimization problems , 2011, Adv. Comput. Math..

[25]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[26]  Christine Tobler,et al.  Multilevel preconditioning and low‐rank tensor iteration for space–time simultaneous discretizations of parabolic PDEs , 2015, Numer. Linear Algebra Appl..

[27]  P. Benner,et al.  Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey , 2013 .

[28]  Valeria Simoncini,et al.  Computational Methods for Linear Matrix Equations , 2016, SIAM Rev..

[29]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[30]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[31]  Julianne Chung,et al.  Optimal Regularized Inverse Matrices for Inverse Problems , 2016, SIAM J. Matrix Anal. Appl..

[32]  Bart G. van Bloemen Waanders,et al.  Fast Algorithms for Bayesian Uncertainty Quantification in Large-Scale Linear Inverse Problems Based on Low-Rank Partial Hessian Approximations , 2011, SIAM J. Sci. Comput..

[33]  Julianne Chung,et al.  An efficient approach for computing optimal low-rank regularized inverse matrices , 2014, ArXiv.