Low-Rank Eigenvector Compression of Posterior Covariance Matrices for Linear Gaussian Inverse Problems
暂无分享,去创建一个
[1] Daniel Kressner,et al. Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems , 2011, SIAM J. Matrix Anal. Appl..
[2] Daniel Kressner,et al. A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.
[3] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[4] Daniel Kressner,et al. Krylov Subspace Methods for Linear Systems with Tensor Product Structure , 2010, SIAM J. Matrix Anal. Appl..
[5] R. Herzog,et al. Algorithms for PDE‐constrained optimization , 2010 .
[6] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[7] Alfio Borzì,et al. Multigrid methods for parabolic distributed optimal control problems , 2003 .
[8] Ivan P. Gavrilyuk,et al. Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..
[9] Tiangang Cui,et al. Goal-Oriented Optimal Approximations of Bayesian Linear Inverse Problems , 2016, SIAM J. Sci. Comput..
[10] Martin Stoll,et al. Regularization-Robust Preconditioners for Time-Dependent PDE-Constrained Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..
[11] Ivan V. Oseledets,et al. Solution of Linear Systems and Matrix Inversion in the TT-Format , 2012, SIAM J. Sci. Comput..
[12] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[13] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[14] Martin B. van Gijzen,et al. IDR(s): A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations , 2008, SIAM J. Sci. Comput..
[15] James Martin,et al. A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion , 2013, SIAM J. Sci. Comput..
[16] S. Dolgov. TT-GMRES: solution to a linear system in the structured tensor format , 2012, 1206.5512.
[17] S. V. Dolgov,et al. ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .
[18] Peter Benner,et al. Computing real low-rank solutions of Sylvester equations by the factored ADI method , 2014, Comput. Math. Appl..
[19] Long Chen. INTRODUCTION TO MULTIGRID METHODS , 2005 .
[20] Stefan Ulbrich,et al. Optimization with PDE Constraints , 2008, Mathematical modelling.
[21] Martin Stoll,et al. A Low-Rank in Time Approach to PDE-Constrained Optimization , 2015, SIAM J. Sci. Comput..
[22] V. G. Sigillito,et al. Eigenvalues of the Laplacian in Two Dimensions , 1984 .
[23] Faming Liang,et al. Statistical and Computational Inverse Problems , 2006, Technometrics.
[24] Michele Benzi,et al. A preconditioning technique for a class of PDE-constrained optimization problems , 2011, Adv. Comput. Math..
[25] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[26] Christine Tobler,et al. Multilevel preconditioning and low‐rank tensor iteration for space–time simultaneous discretizations of parabolic PDEs , 2015, Numer. Linear Algebra Appl..
[27] P. Benner,et al. Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey , 2013 .
[28] Valeria Simoncini,et al. Computational Methods for Linear Matrix Equations , 2016, SIAM Rev..
[29] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[30] F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .
[31] Julianne Chung,et al. Optimal Regularized Inverse Matrices for Inverse Problems , 2016, SIAM J. Matrix Anal. Appl..
[32] Bart G. van Bloemen Waanders,et al. Fast Algorithms for Bayesian Uncertainty Quantification in Large-Scale Linear Inverse Problems Based on Low-Rank Partial Hessian Approximations , 2011, SIAM J. Sci. Comput..
[33] Julianne Chung,et al. An efficient approach for computing optimal low-rank regularized inverse matrices , 2014, ArXiv.