A Priori Assessment of an Iterative Deconvolution Method for LES Sub-grid Scale Variance Modelling

An alternative method is proposed as a means for providing a closure for the sub-grid-scale variance, which is a key quantity in reacting flow simulations. The method is based on deconvolution, namely a constrained iterative deconvolution method combined with explicit filtering. The assessment of the method is conducted a priori using a direct numerical simulation database, and for the conditions tested in this study the method is found to provide quantitatively good estimates of both the un-filtered progress variable and its variance.

[1]  A Similarity Subgrid Model for Premixed Turbulent Combustion , 2009 .

[2]  P. Jansson Deconvolution : with applications in spectroscopy , 1984 .

[3]  J. Riley,et al.  A subgrid model for equilibrium chemistry in turbulent flows , 1994 .

[4]  Denis Veynante,et al.  Large-eddy simulation of a lifted methane jet flame in a vitiated coflow , 2008 .

[5]  Matthias Ihme,et al.  Regularized deconvolution method for turbulent combustion modeling , 2017 .

[6]  D. Rawlins,et al.  The point‐spread function of a confocal microscope: its measurement and use in deconvolution of 3‐D data , 1991 .

[7]  B. Geurts Inverse modeling for large-eddy simulation , 1997 .

[8]  Nedunchezhian Swaminathan,et al.  Direct Numerical Simulation of Complex Fuel Combustion with Detailed Chemistry: Physical Insight and Mean Reaction Rate Modeling , 2015 .

[9]  Fionn Murtagh,et al.  Deconvolution in Astronomy: A Review , 2002 .

[10]  V. Raman,et al.  A posteriori analysis of numerical errors in subfilter scalar variance modeling for large eddy simulation , 2011 .

[11]  Sharath S. Girimaji,et al.  ANALYSIS AND MODELING OF SUBGRID SCALAR MIXING USING NUMERICAL DATA , 1995 .

[12]  Heinz Pitsch,et al.  Numerical errors in the computation of subfilter scalar variance in large eddy simulations , 2009 .

[13]  Olivier Colin,et al.  Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner , 2008 .

[14]  P. Moin,et al.  Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion , 2004, Journal of Fluid Mechanics.

[15]  A. Cook Determination of the constant coefficient in scale similarity models of turbulence , 1997 .

[16]  Monika Neda,et al.  A similarity theory of approximate deconvolution models of turbulence , 2007 .

[17]  Heinz Pitsch,et al.  Development of a dynamic model for the subfilter scalar variance using the concept of optimal estimators , 2008 .

[18]  N. Swaminathan,et al.  Application of unstrained flamelet SGS closure for multi-regime premixed combustion , 2016 .

[19]  P. Sagaut Large Eddy Simulation for Incompressible Flows , 2001 .

[20]  Clinton P. T. Groth,et al.  LES of a laboratory-scale turbulent premixed Bunsen flame using FSD, PCM-FPI and thickened flame models , 2011 .

[21]  H. Pitsch LARGE-EDDY SIMULATION OF TURBULENT COMBUSTION , 2006 .

[22]  W. Malalasekera,et al.  Large Eddy Simulations of Swirling Non-premixed Flames With Flamelet Models: A Comparison of Numerical Methods , 2008 .

[23]  Thierry Poinsot,et al.  Large Eddy Simulations of gaseous flames in gas turbine combustion chambers , 2012 .

[24]  E. Saiki,et al.  A subgrid-scale model based on the estimation of unresolved scales of turbulence , 1997 .

[25]  Denis Veynante,et al.  Comparison between LES results and experimental data in reacting flows , 2006 .

[26]  Luc Vervisch,et al.  Large Eddy Simulation of premixed turbulent combustion using approximate deconvolution and explicit flame filtering , 2015 .

[27]  N. Adams,et al.  An approximate deconvolution procedure for large-eddy simulation , 1999 .

[28]  Nedunchezhian Swaminathan,et al.  A 5-step reduced mechanism for combustion of CO/H2/H2O/CH4/CO2 mixtures with low hydrogen/methane and high H2O content , 2013 .

[29]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[30]  Joseph Mathew Large eddy simulation of a premixed flame with approximate deconvolution modeling , 2002 .

[31]  Parviz Moin,et al.  A dynamic slip boundary condition for wall-modeled large-eddy simulation , 2014 .

[32]  Luc Vervisch,et al.  DNS and approximate deconvolution as a tool to analyse one-dimensional filtered flame sub-grid scale modelling , 2017 .

[33]  J. Ferziger,et al.  Evaluation of subgrid-scale models using an accurately simulated turbulent flow , 1979, Journal of Fluid Mechanics.

[34]  Jérôme Idier,et al.  Evaluation of deconvolution modelling applied to numerical combustion , 2018 .

[35]  P. Crilly A quantitative evaluation of various iterative deconvolution algorithms , 1991 .

[36]  N. Adams,et al.  An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows , 2001 .

[37]  P. H. Cittert Zum Einfluß der Spaltbreite auf die Intensitätsverteilung in Spektrallinien. II , 1930 .

[38]  Luc Vervisch,et al.  Eulerian Scalar Projection in Lagrangian Point Source Context: An Approximate Inverse Filtering Approach , 2016 .

[39]  E. Hawkes,et al.  LES of a premixed jet flame DNS using a strained flamelet model , 2013 .

[40]  P. Moin,et al.  A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar , 1998 .

[41]  Luc Vervisch,et al.  Modeling subgrid scale mixture fraction variance in LES of evaporating spray , 2006 .

[42]  Salah S. Ibrahim,et al.  LES of Recirculation and Vortex Breakdown in Swirling Flames , 2008 .

[43]  N. Swaminathan,et al.  Unstrained and strained flamelets for LES of premixed combustion , 2016 .

[44]  Vincent Moureau,et al.  From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered laminar flame-PDF modeling , 2011 .