The Pade iterations for the matrix sign function and their reciprocals are optimal
暂无分享,去创建一个
[1] Ernst Schröder,et al. Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen , 1870 .
[2] Walter Gander,et al. Algorithms for the Polar Decomposition , 1990, SIAM J. Sci. Comput..
[3] A. Laub. Invariant Subspace Methods for the Numerical Solution of Riccati Equations , 1991 .
[4] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[5] Nicholas J. Higham,et al. Stable iterations for the matrix square root , 1997, Numerical Algorithms.
[6] W. J. Thron,et al. Encyclopedia of Mathematics and its Applications. , 1982 .
[7] L. Shieh,et al. Computation of the matrix sign function using continued fraction expansion , 1994, IEEE Trans. Autom. Control..
[8] Krystyna Zietak,et al. A Padé family of iterations for the matrix sector function and the matrix pth root , 2009, Numer. Linear Algebra Appl..
[9] Bruno Iannazzo,et al. A Family of Rational Iterations and Its Application to the Computation of the Matrix pth Root , 2008, SIAM J. Matrix Anal. Appl..
[10] Bruno Iannazzo,et al. Palindromic matrix polynomials, matrix functions and integral representations , 2011 .
[11] G. Stewart,et al. On Infinitely Many Algorithms for Solving Equations , 1998 .
[12] Alan J. Laub,et al. A hyperbolic tangent identity and the geometry of Padé sign function iterations , 2005, Numerical Algorithms.
[13] Zhenyue Zhang,et al. Error analysis of Padé iterations for computing matrix invariant subspaces , 2009 .
[14] A. Laub,et al. The matrix sign function , 1995, IEEE Trans. Autom. Control..
[15] Christian Henriksen,et al. On König's root-finding algorithms* , 2003 .
[16] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[17] VALERIA SIMONCINI,et al. MATRIX FUNCTIONS , 2006 .
[18] J. L. Howland. The sign matrix and the separation of matrix eigenvalues , 1983 .
[19] Bahman Kalantari,et al. A basic family of iteration functions for polynomial root finding and its characterizations , 1997 .
[20] A. Laub,et al. Rational iterative methods for the matrix sign function , 1991 .
[21] H. V. D. Vorst,et al. Numerical methods for the QCDd overlap operator. I. Sign-function and error bounds , 2002, hep-lat/0202025.