Toward a Unified Color Space for Perception-Based Image Processing

Image processing methods that utilize characteristics of the human visual system require color spaces with certain properties to operate effectively. After analyzing different types of perception-based image processing problems, we present a list of properties that a unified color space should have. Due to contradictory perceptual phenomena and geometric issues, a color space cannot incorporate all these properties. We therefore identify the most important properties and focus on creating opponent color spaces without cross contamination between color attributes (i.e., lightness, chroma, and hue) and with maximum perceptual uniformity induced by color-difference formulas. Color lookup tables define simple transformations from an initial color space to the new spaces. We calculate such tables using multigrid optimization considering the Hung and Berns data of constant perceived hue and the CMC, CIE94, and CIEDE2000 color-difference formulas. The resulting color spaces exhibit low cross contamination between color attributes and are only slightly less perceptually uniform than spaces optimized exclusively for perceptual uniformity. We compare the CIEDE2000-based space with commonly used color spaces in two examples of perception-based image processing. In both cases, standard methods show improved results if the new space is used. All color-space transformations and examples are provided as MATLAB codes on our website.

[1]  Garrett M. Johnson,et al.  Derivation of a color space for image color difference measurement , 2010 .

[2]  Rolf G. Kuehni Hue uniformity and the CIELAB space and color difference formula , 1998 .

[3]  Guihua Cui,et al.  Measurement of the relationship between perceived and computed color differences. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  Ingmar Lissner,et al.  How Perceptually Uniform Can a Hue Linear Color Space Be? , 2010, CIC.

[5]  Roy S. Berns,et al.  Extending Printing Color Gamut by Optimizing the Spectral Reflectance of Inks , 2004, Color Imaging Conference.

[6]  Ingmar Lissner,et al.  Upgrading color-difference formulas. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  Ingmar Lissner,et al.  Improving Color-Difference Formulas Using Visual Data , 2010, CGIV/MCS.

[8]  Mitchell R. Balonon-Rosen,et al.  Visual determination of suprathreshold color‐difference tolerances using probit analysis , 1991 .

[9]  R. Berns,et al.  Determination of constant Hue Loci for a CRT gamut and their predictions using color appearance spaces , 1995 .

[10]  K. Witt GEOMETRIC RELATIONS BETWEEN SCALES OF SMALL COLOUR DIFFERENCES , 1999 .

[11]  M. Luo,et al.  The development of the CIE 2000 Colour Difference Formula , 2001 .

[12]  Philipp Urban,et al.  Metamer density estimated color correction , 2009, Signal Image Video Process..

[13]  Mark D. Fairchild,et al.  The HDR Photographic Survey , 2007, CIC.

[14]  Hui-Liang Shen,et al.  Investigation of Texture Effect on Visual Colour Difference Evaluation , 2005 .

[15]  K. Mullen The contrast sensitivity of human colour vision to red‐green and blue‐yellow chromatic gratings. , 1985, The Journal of physiology.

[16]  Mahdi Nezamabadi,et al.  Color Appearance Models , 2014, J. Electronic Imaging.

[17]  David L. MacAdam,et al.  Nonlinear Relations of Psychometric Scale Values to Chromaticity Differences , 1963 .

[18]  Guihua Cui,et al.  New experimental data for investigating uniform color spaces , 2002, Other Conferences.

[19]  A. Linksz Outlines of a Theory of the Light Sense. , 1965 .

[20]  H. Joel Trussell,et al.  Problems in publishing accurate color in IEEE journals , 2002, IEEE Trans. Image Process..

[21]  Mark D. Fairchild,et al.  Development and Testing of a Color Space (IPT) with Improved Hue Uniformity , 1998, CIC.

[22]  Mark D. Fairchild,et al.  iCAM06: A refined image appearance model for HDR image rendering , 2007, J. Vis. Commun. Image Represent..

[23]  D. L. Macadam On the geometry of color space , 1944 .

[24]  Roy S. Berns,et al.  Colorimetric Characterization of a Computer-Controlled Liquid Crystal Display , 2004 .

[25]  Mark D. Fairchild,et al.  iCAM framework for image appearance, differences, and quality , 2004, J. Electronic Imaging.

[26]  Mark D. Fairchild,et al.  Minimizing the Perception of Chromatic Noise in Digital Images , 2004, Color Imaging Conference.

[27]  Francis H. Y. Chan,et al.  Color image denoising with wavelet thresholding based on human visual system model , 2003, Signal Process. Image Commun..

[28]  Mark D. Fairchild,et al.  The effect of opponent noise on image quality , 2005, IS&T/SPIE Electronic Imaging.

[29]  Changjun Li,et al.  The CIECAM02 Color Appearance Model , 2002, CIC.

[30]  S. Mitra,et al.  Color Image Segmentation : A State-ofthe-Art Survey , 2022 .

[31]  Peter G. J. Barten,et al.  Contrast sensitivity of the human eye and its e ects on image quality , 1999 .

[32]  Mark D. Fairchild,et al.  A top down description of S-CIELAB and CIEDE2000 , 2003 .

[33]  M. Luo,et al.  Chromaticity‐discrimination ellipses for surface colours , 1986 .

[34]  Josef Kittler,et al.  Histogram-based segmentation in a perceptually uniform color space , 1998, IEEE Trans. Image Process..

[35]  Brian A. Wandell,et al.  A spatial extension of CIELAB for digital color‐image reproduction , 1997 .

[36]  Jn Morovi,et al.  Color Gamut Mapping , 2008 .

[37]  Rafael Huertas,et al.  Performance of recent advanced color-difference formulas using the standardized residual sum of squares index. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[38]  Rolf G. Kuehni,et al.  Color Space and Its Divisions , 2003 .

[39]  R. Berns,et al.  Embedding non-Euclidean color spaces into Euclidean color spaces with minimal isometric disagreement. , 2007, Journal of The Optical Society of America A-optics Image Science and Vision.

[40]  Mark D. Fairchild,et al.  The iCAM Framework for Image Appearance, Image Differences, and Image Quality , 2002 .