Construction and analysis of cubic Powell-Sabin B-splines

Abstract We consider a new B-spline representation for the space of C 1 cubic splines defined on a triangulation with a Powell–Sabin refinement. The construction is based on lifting particular triangles and line segments from the domain. We prove that the B-splines form a locally supported stable basis and a convex partition of unity. Furthermore, we provide explicit expressions for the B-spline coefficients of any element of the cubic spline space and show how to compute the Bernstein–Bezier form of such a spline in a stable way. The B-spline representation induces a natural control structure that is useful for geometric modelling. Finally, we explore how classical C 1 quadratic Powell–Sabin splines and C 1 cubic Clough–Tocher splines can be expressed in the new B-spline representation.

[1]  Paul Dierckx,et al.  Subdivision of uniform Powell-Sabin splines , 1999, Comput. Aided Geom. Des..

[2]  Abdelleh Lamnii,et al.  A normalized basis for condensed C1 Powell-Sabin-12 splines , 2015, Comput. Aided Geom. Des..

[3]  Hans-Peter Seidel,et al.  An introduction to polar forms , 1993, IEEE Computer Graphics and Applications.

[4]  Adhemar Bultheel,et al.  On the stability of normalized Powell-Sabin B-splines , 2004 .

[5]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[6]  Hendrik Speleers,et al.  Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .

[7]  Stephen Mann,et al.  Cubic precision Clough-Tocher interpolation , 1999, Comput. Aided Geom. Des..

[8]  A. Bultheel,et al.  Stable multiresolution analysis on triangles for surface compression , 2006 .

[9]  Hendrik Speleers A new B-spline representation for cubic splines over Powell-Sabin triangulations , 2015, Comput. Aided Geom. Des..

[10]  A. Serghini,et al.  Polar forms and quadratic spline quasi-interpolants on Powell--Sabin partitions , 2009 .

[11]  Hendrik Speleers,et al.  On multivariate polynomials in Bernstein-Bézier form and tensor algebra , 2011, J. Comput. Appl. Math..

[12]  Hendrik Speleers,et al.  Numerical solution of partial differential equations with Powell-Sabin splines , 2006 .

[13]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..

[14]  Alok Aggarwal,et al.  An Optimal Algorithm for Finding Minimal Enclosing Triangles , 1986, J. Algorithms.

[15]  Victor Klee,et al.  Finding the Smallest Triangles Containing a Given Convex Polygon , 1985, J. Algorithms.

[16]  Carla Manni,et al.  Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..

[17]  Hendrik Speleers,et al.  Multivariate normalized Powell-Sabin B-splines and quasi-interpolants , 2013, Comput. Aided Geom. Des..

[18]  A. Serghini,et al.  Normalized trivariate B-splines on Worsey-Piper split and quasi-interpolants , 2012 .

[19]  Huan-Wen Liu,et al.  A bivariate C1 cubic super spline space on Powell-Sabin triangulation , 2008, Comput. Math. Appl..

[20]  Jan Grošelj A normalized representation of super splines of arbitrary degree on Powell–Sabin triangulations , 2016 .

[21]  Jan Groselj,et al.  C1 cubic splines on Powell-Sabin triangulations , 2016, Appl. Math. Comput..

[22]  Gerald E. Farin,et al.  A modified Clough-Tocher interpolant , 1985, Comput. Aided Geom. Des..

[23]  Ahmed Tijini,et al.  A normalized basis for C1 cubic super spline space on Powell-Sabin triangulation , 2014, Math. Comput. Simul..

[24]  Hendrik Speleers,et al.  Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .

[25]  Hendrik Speleers,et al.  A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..

[26]  Hendrik Speleers,et al.  A normalized basis for reduced Clough-Tocher splines , 2010, Comput. Aided Geom. Des..

[27]  Adhemar Bultheel,et al.  Automatic construction of control triangles for subdivided Powell-Sabin splines , 2004, Comput. Aided Geom. Des..

[28]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[29]  Tom Lyche,et al.  A B-spline-like basis for the Powell-Sabin 12-split based on simplex splines , 2013, Math. Comput..

[30]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.