Construction and analysis of cubic Powell-Sabin B-splines
暂无分享,去创建一个
[1] Paul Dierckx,et al. Subdivision of uniform Powell-Sabin splines , 1999, Comput. Aided Geom. Des..
[2] Abdelleh Lamnii,et al. A normalized basis for condensed C1 Powell-Sabin-12 splines , 2015, Comput. Aided Geom. Des..
[3] Hans-Peter Seidel,et al. An introduction to polar forms , 1993, IEEE Computer Graphics and Applications.
[4] Adhemar Bultheel,et al. On the stability of normalized Powell-Sabin B-splines , 2004 .
[5] Larry L. Schumaker,et al. Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.
[6] Hendrik Speleers,et al. Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .
[7] Stephen Mann,et al. Cubic precision Clough-Tocher interpolation , 1999, Comput. Aided Geom. Des..
[8] A. Bultheel,et al. Stable multiresolution analysis on triangles for surface compression , 2006 .
[9] Hendrik Speleers. A new B-spline representation for cubic splines over Powell-Sabin triangulations , 2015, Comput. Aided Geom. Des..
[10] A. Serghini,et al. Polar forms and quadratic spline quasi-interpolants on Powell--Sabin partitions , 2009 .
[11] Hendrik Speleers,et al. On multivariate polynomials in Bernstein-Bézier form and tensor algebra , 2011, J. Comput. Appl. Math..
[12] Hendrik Speleers,et al. Numerical solution of partial differential equations with Powell-Sabin splines , 2006 .
[13] Gerald Farin,et al. Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..
[14] Alok Aggarwal,et al. An Optimal Algorithm for Finding Minimal Enclosing Triangles , 1986, J. Algorithms.
[15] Victor Klee,et al. Finding the Smallest Triangles Containing a Given Convex Polygon , 1985, J. Algorithms.
[16] Carla Manni,et al. Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..
[17] Hendrik Speleers,et al. Multivariate normalized Powell-Sabin B-splines and quasi-interpolants , 2013, Comput. Aided Geom. Des..
[18] A. Serghini,et al. Normalized trivariate B-splines on Worsey-Piper split and quasi-interpolants , 2012 .
[19] Huan-Wen Liu,et al. A bivariate C1 cubic super spline space on Powell-Sabin triangulation , 2008, Comput. Math. Appl..
[20] Jan Grošelj. A normalized representation of super splines of arbitrary degree on Powell–Sabin triangulations , 2016 .
[21] Jan Groselj,et al. C1 cubic splines on Powell-Sabin triangulations , 2016, Appl. Math. Comput..
[22] Gerald E. Farin,et al. A modified Clough-Tocher interpolant , 1985, Comput. Aided Geom. Des..
[23] Ahmed Tijini,et al. A normalized basis for C1 cubic super spline space on Powell-Sabin triangulation , 2014, Math. Comput. Simul..
[24] Hendrik Speleers,et al. Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .
[25] Hendrik Speleers,et al. A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..
[26] Hendrik Speleers,et al. A normalized basis for reduced Clough-Tocher splines , 2010, Comput. Aided Geom. Des..
[27] Adhemar Bultheel,et al. Automatic construction of control triangles for subdivided Powell-Sabin splines , 2004, Comput. Aided Geom. Des..
[28] Paul Dierckx,et al. On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..
[29] Tom Lyche,et al. A B-spline-like basis for the Powell-Sabin 12-split based on simplex splines , 2013, Math. Comput..
[30] Malcolm A. Sabin,et al. Piecewise Quadratic Approximations on Triangles , 1977, TOMS.