Atom-Number Enhancement by Shielding Atoms From Losses in Strontium Magneto-Optical Traps

We present a scheme to enhance the atom number in magneto-optical traps of strontium atoms operating on the 461 nm transition. This scheme consists of resonantly driving the $^1$S$_0\to^3$P$_1$ intercombination line at 689 nm, which continuously populates a short-lived reservoir state and, as expected from a theoretical model, partially shields the atomic cloud from losses arising in the 461 nm cooling cycle. We show a factor of two enhancement in the atom number for the bosonic isotopes $^{88}$Sr and $^{84}$Sr, and the fermionic isotope $^{87}$Sr, in good agreement with our model. Our scheme can be applied in the majority of strontium experiments without increasing the experimental complexity of the apparatus, since the employed 689 nm transition is commonly used for further cooling. Our method should thus be beneficial to a broad range of quantum science and technology applications exploiting cold strontium atoms, and could be extended to other atomic species.

[1]  S. Will,et al.  Jet-loaded cold atomic beam source for strontium. , 2022, The Review of scientific instruments.

[2]  A. Kaufman,et al.  Long-lived Bell states in an array of optical clock qubits , 2021, Nature Physics.

[3]  F. Schreck,et al.  Laser cooling for quantum gases , 2021, Nature Physics.

[4]  John M. Robinson,et al.  Resolving the gravitational redshift across a millimetre-scale atomic sample , 2021, Nature.

[5]  H. Katori Longitudinal Ramsey spectroscopy of atoms for continuous operation of optical clocks , 2021, Applied Physics Express.

[6]  G. Natale,et al.  Observation of a narrow inner-shell orbital transition in atomic erbium at 1299 nm , 2021, Physical Review Research.

[7]  M. Menchetti,et al.  Novel repumping on 3P0 → 3D1 for Sr magneto-optical trap and Landé g factor measurement of 3D1 , 2020, Journal of Physics B: Atomic, Molecular and Optical Physics.

[8]  T. Fukuhara,et al.  Tools for quantum simulation with ultracold atoms in optical lattices , 2020, Nature Reviews Physics.

[9]  P. Głowacki,et al.  Investigations of the possible second-stage laser cooling transitions for the holmium atom magneto-optical trap , 2020 .

[10]  H. Shinkai,et al.  Test of general relativity by a pair of transportable optical lattice clocks , 2020 .

[11]  A. Cooper,et al.  High-fidelity entanglement and detection of alkaline-earth Rydberg atoms , 2020, Nature Physics.

[12]  C. Foot,et al.  AION: an atom interferometer observatory and network , 2019, Journal of Cosmology and Astroparticle Physics.

[13]  G. Lamporesi,et al.  Sideband-Enhanced Cold Atomic Source for Optical Clocks , 2019, Physical Review Applied.

[14]  Achim Peters,et al.  AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space , 2019, Experimental Astronomy.

[15]  P. Windpassinger,et al.  Spectroscopy of the 1001-nm transition in atomic dysprosium , 2019, Physical Review A.

[16]  S. Bennetts,et al.  Continuous Guided Strontium Beam with High Phase-Space Density , 2019, Physical Review Applied.

[17]  M. Weidemüller,et al.  Analyzing a single-laser repumping scheme for efficient loading of a strontium magneto-optical trap , 2018, Physical Review A.

[18]  A. Cooper,et al.  Alkaline-Earth Atoms in Optical Tweezers , 2018, Physical Review X.

[19]  P. Courteille,et al.  Comparison between 403 nm and 497 nm repumping schemes for strontium magneto-optical traps , 2018, Journal of Physics Communications.

[20]  M. Zucco,et al.  Geodesy and metrology with a transportable optical clock , 2018, Nature Physics.

[21]  P. Huillery,et al.  Rydberg-Dressed Magneto-optical Trap. , 2018, Physical review letters.

[22]  J. Eschner,et al.  Continuous-wave virtual-state lasing from cold ytterbium atoms , 2017, Physical Review A.

[23]  H. Katori,et al.  Optically guided atom interferometer tuned to magic wavelength , 2017, 1710.08706.

[24]  M. Weidemüller,et al.  Erratum: Two-dimensional magneto-optical trap as a source for cold strontium atoms [Phys. Rev. A 96, 053415 (2017)] , 2017, 1709.00790.

[25]  Leonardo Salvi,et al.  Atom Interferometry with the Sr Optical Clock Transition. , 2017, Physical review letters.

[26]  F B Dunning,et al.  Creation of Rydberg Polarons in a Bose Gas. , 2017, Physical review letters.

[27]  M. Zucco,et al.  Geodesy and metrology with a transportable optical clock , 2017, 1705.04089.

[28]  L. Sonderhouse,et al.  A Fermi-degenerate three-dimensional optical lattice clock , 2017, Science.

[29]  R. Ding Narrow Line Cooling of 84Sr , 2016 .

[30]  M. Norcia,et al.  Superradiance on the millihertz linewidth strontium clock transition , 2016, Science Advances.

[31]  R. Moszynski,et al.  Photodissociation of ultracold diatomic strontium molecules with quantum state control , 2015, Nature.

[32]  G. Campbell,et al.  Enhanced magnetic trap loading for atomic strontium , 2015, 1508.05405.

[33]  K. Pandey,et al.  A high flux source of cold strontium atoms , 2015, 1505.04507.

[34]  T L Nicholson,et al.  Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty , 2014, Nature Communications.

[35]  A. Aspect,et al.  Gray-molasses cooling of 39K to a high phase-space density , 2013, 1310.4014.

[36]  C. Chin,et al.  Efficient continuous-duty Bitter-type electromagnets for cold atom experiments. , 2013, The Review of scientific instruments.

[37]  M. Saffman,et al.  Magneto-optical trapping of holmium atoms , 2013, 1401.4156.

[38]  G. Lamporesi,et al.  Compact high-flux source of cold sodium atoms. , 2013, The Review of scientific instruments.

[39]  R. Grimm,et al.  Laser cooling to quantum degeneracy. , 2013, Physical review letters.

[40]  M. Bishof,et al.  A Quantum Many-Body Spin System in an Optical Lattice Clock , 2012, Science.

[41]  W. Ertmer,et al.  Beating the density limit by continuously loading a dipole trap from millikelvin-hot magnesium atoms , 2012 .

[42]  S. Falke,et al.  A compact and efficient strontium oven for laser-cooling experiments. , 2012, The Review of scientific instruments.

[43]  Hidetoshi Katori,et al.  Frequency comparison of optical lattice clocks beyond the Dick limit , 2011 .

[44]  B. Lev,et al.  Spectroscopy of a narrow-line laser-cooling transition in atomic dysprosium , 2010, 1009.2962.

[45]  T. Killian,et al.  Degenerate Fermi gas of (87)Sr. , 2010, Physical review letters.

[46]  A. Sokolov,et al.  Magneto-optical trap for thulium atoms , 2010, 1003.0877.

[47]  T. Killian,et al.  Bose-Einstein condensation of 84Sr. , 2009, Physical review letters.

[48]  T. Killian,et al.  Bose-Einstein Condensation of 84-Sr , 2009, 0910.3222.

[49]  R. Grimm,et al.  Bose-Einstein condensation of strontium. , 2009, Physical review letters.

[50]  F. Riehle,et al.  Bose-Einstein condensation of alkaline earth atoms: ;{40}Ca. , 2009, Physical review letters.

[51]  T. Killian,et al.  Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2–(5s4d)3D2 transition , 2009, 0907.2270.

[52]  Y. Ovchinnikov,et al.  A permanent Zeeman slower for Sr atomic clock , 2008 .

[53]  R. Côté,et al.  Two-photon photoassociative spectroscopy of ultracold 88-Sr , 2008, 0808.3434.

[54]  A. Stein,et al.  Fourier-transform spectroscopy of Sr 2 and revised ground-state potential , 2008, 0807.4664.

[55]  M. Takamoto,et al.  Trapping of neutral mercury atoms and prospects for optical lattice clocks. , 2007, Physical review letters.

[56]  Kathy-Ann Brickman,et al.  Magneto-optical trapping of cadmium , 2007, 0706.1608.

[57]  F. Sorrentino,et al.  Long-lived BLOCH oscillations with bosonic sr atoms and application to gravity measurement at the micrometer scale. , 2006, Physical review letters.

[58]  F. Sorrentino,et al.  Cooling and trapping of ultracold strontium isotopic mixtures , 2005, physics/0608233.

[59]  J. Reader,et al.  Laser cooling transitions in atomic erbium. , 2005, Optics express.

[60]  V. Bagnato,et al.  Intensity dependence for trap loss rate in a magneto-optical trap of strontium , 2004 .

[61]  Jun Ye,et al.  Cooling and trapping of atomic strontium , 2003 .

[62]  Tetsuya Ido,et al.  Recoil-limited laser cooling of 87Sr atoms near the Fermi temperature. , 2003, Physical review letters.

[63]  M. Kuwata-Gonokami,et al.  Laser cooling of strontium atoms toward quantum degeneracy , 2001 .

[64]  Harold Metcalf,et al.  Laser Cooling and Trapping , 1999, Peking University-World Scientific Advanced Physics Series.

[65]  Tetsuya Ido,et al.  Magneto-Optical Trapping and Cooling of Strontium Atoms down to the Photon Recoil Temperature , 1999 .

[66]  John L. Hall,et al.  Cold collisions of Sr * -Sr in a magneto-optical trap , 1999 .

[67]  Cornell,et al.  Reduction of light-assisted collisional loss rate from a low-pressure vapor-cell trap. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[68]  Pritchard,et al.  High densities of cold atoms in a dark spontaneous-force optical trap. , 1993, Physical review letters.

[69]  Takayuki Kurosu,et al.  Laser Cooling and Trapping of Alkaline Earth Atoms , 1992 .

[70]  Peer Review File Manuscript Title: Continuous Bose-Einstein condensation Reviewer Comments & Author Rebuttals , 2022 .

[71]  J. Nelson What Is an Atomic Clock , 2019 .

[72]  S. Stellmer,et al.  UvA-DARE ( Digital Academic Repository ) Reservoir spectroscopy of 5 s 5 p 3 P 2-5 snd 3 D 1 , 2 , 3 transitions in strontium , 2014 .

[73]  I. L. Barnes,et al.  Absolute Isotopic Abundance Ratios and Atomic Weight of a Reference Sample of Strontium , 2001 .

[74]  Vanderlei Salvador Bagnato,et al.  Experiments and theory in cold and ultracold collisions , 1999 .

[75]  UvA-DARE (Digital Academic Repository) Reservoir spectroscopy of 5s5p 3P2-5snd 3D1,2,3 transitions in strontium 5s5p 3P2-5snd 3D1,2,3 , 2022 .