Multi-Objective Evolutionary Algorithms and Pattern Search Methods for Circuit Design Problems

The paper concerns the design of evolutionary algorithms and pattern search methods on two circuit design problems: the multi-objective optimization of an Operational Transconductance Amplifier and of a fifth-order leapfrog filter. The experimental results obtained show that evolutionary algorithms are more robust and effective in terms of the quality of the solutions and computational effort than classical methods. In particular, the observed Pareto fronts determined by evolutionary algo- rithms has a better spread of solutions with a larger number of nondominated solutions when compared to the classical multi-objective techniques.

[1]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[2]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[3]  Chenming Hu,et al.  MOSFET Modeling & BSIM3 User’s Guide , 1999 .

[4]  Gary B. Lamont,et al.  Applications Of Multi-Objective Evolutionary Algorithms , 2004 .

[5]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[6]  Yuhua Cheng,et al.  MOSFET Modeling and Bsim3 User's Guide , 1999 .

[7]  Hirotaka Nakayama,et al.  Theory of Multiobjective Optimization , 1985 .

[8]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[9]  Emil Hjalmarson Studies on Design Automation of Analog Circuits - the Design Flow , 2003 .

[10]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[11]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[12]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[13]  Lucas Bradstreet,et al.  Heuristics for optimizing the calculation of hypervolume for multi-objective optimization problems , 2005, 2005 IEEE Congress on Evolutionary Computation.

[14]  J.L. Huertas,et al.  A prototype tool for optimum analog sizing using simulated annealing , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[15]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[16]  李幼升,et al.  Ph , 1989 .

[17]  Rob A. Rutenbar,et al.  Anaconda: simulation-based synthesis of analog circuits viastochastic pattern search , 2000, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..