Growth of graphene films by plasma enhanced chemical vapour deposition

Since it was isolated in 2004, graphene, the first known 2D crystal, is the object of a growing interest, due to the range of its possible applications as well as its intrinsic properties. From large scale electronics and photovoltaics to spintronics and fundamental quantum phenomena, graphene films have attracted a large community of researchers. But bringing graphene to industrial applications will require a reliable, low cost and easily scalable synthesis process. In this paper we present a new growth process based on plasma enhanced chemical vapor deposition. Furthermore, we show that, when the substrate is an oxidized silicon wafer covered by a nickel thin film, graphene is formed not only on top of the nickel film, but also at the interface with the supporting SiO2 layer. The films grown using this method were characterized using classical methods (Raman spectroscopy, AFM, SEM) and their conductivity is found to be close to those reported by others.