Bayesian Inference in Non-Markovian State-Space Models With Applications to Battery Fractional-Order Systems

Battery impedance spectroscopy models are given by fractional-order (FO) differential equations. In the discrete-time domain, they give rise to state-space models where the latent process is not Markovian. Parameter estimation for these models is, therefore, challenging, especially for noncommensurate FO models. In this paper, we propose a Bayesian approach to identify the parameters of generic FO systems. The computational challenge is tackled with particle Markov chain Monte Carlo methods, with an implementation specifically designed for the non-Markovian setting. Two examples are provided. In a first example, the approach is applied to identify a battery commensurate FO model with a single constant phase element (CPE) by using real data. We compare the proposed approach to an instrumental variable method. Then, we consider a noncommensurate FO model with more than one CPE and synthetic data sets, investigating how the proposed method enables the study of various effects on parameter identification, such as the data length, the magnitude of the input signal, the choice of prior, and the measurement noise.

[1]  C. Andrieu,et al.  Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms , 2012, 1210.1484.

[2]  Pierre Del Moral,et al.  Stability of Feynman-Kac formulae with path-dependent potentials , 2009, 0910.4870.

[3]  Pierre E. Jacob,et al.  Path storage in the particle filter , 2013, Statistics and Computing.

[4]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[5]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[6]  P. Moral,et al.  A nonasymptotic theorem for unnormalized Feynman-Kac particle models , 2011 .

[7]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[8]  J. Ross Macdonald,et al.  Applicability and power of complex nonlinear least squares for the analysis of impedance and admittance data , 1982 .

[9]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[10]  A. Oustaloup,et al.  Fractional state variable filter for system identification by fractional model , 2001, 2001 European Control Conference (ECC).

[11]  N. Whiteley Stability properties of some particle filters , 2011, 1109.6779.

[12]  Christian P. Robert,et al.  The Bayesian choice : from decision-theoretic foundations to computational implementation , 2007 .

[13]  P. Young,et al.  Refined instrumental variable methods of recursive time-series analysis Part II. Multivariable systems , 1979 .

[14]  Hosam K. Fathy,et al.  Genetic optimization and experimental validation of a test cycle that maximizes parameter identifiability for a Li-ion equivalent-circuit battery model , 2015 .

[15]  P. Young,et al.  Refined instrumental variable methods of recursive time-series analysis Part I. Single input, single output systems , 1979 .

[16]  Frank D. Wood,et al.  A New Approach to Probabilistic Programming Inference , 2014, AISTATS.

[17]  R. Douc,et al.  Uniform Ergodicity of the Particle Gibbs Sampler , 2014, 1401.0683.

[18]  Christophe Andrieu,et al.  Uniform ergodicity of the iterated conditional SMC and geometric ergodicity of particle Gibbs samplers , 2013, 1312.6432.

[19]  David A. Howey,et al.  Time-domain fitting of battery electrochemical impedance models , 2015 .

[20]  Hugues Garnier,et al.  Parameter and differentiation order estimation in fractional models , 2013, Autom..

[21]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[22]  Baojin Wang,et al.  Fractional-order modeling and parameter identification for lithium-ion batteries , 2015 .

[23]  Olivier Cois,et al.  Systèmes linéaires non entiers et identification par modèle non entier : application en thermique , 2002 .

[24]  Jun Lin,et al.  Modélisation et identification des systèmes d'ordre non entier , 2001 .

[25]  Nigel P. Brandon,et al.  Online Measurement of Battery Impedance Using Motor Controller Excitation , 2014, IEEE Transactions on Vehicular Technology.

[26]  S. M. Mahdi Alavi,et al.  Rechargeable Battery Energy Storage System Design , 2015 .

[27]  Anthony Lee,et al.  Parallel Resampling in the Particle Filter , 2013, 1301.4019.

[28]  P. Young,et al.  Refined instrumental variable methods of recursive time-series analysis Part III. Extensions , 1980 .

[29]  U. Troeltzsch,et al.  Characterizing aging effects of lithium ion batteries by impedance spectroscopy , 2006 .

[30]  Alain Oustaloup,et al.  The CRONE toolbox for Matlab , 2000, CACSD. Conference Proceedings. IEEE International Symposium on Computer-Aided Control System Design (Cat. No.00TH8537).

[31]  Christophe Andrieu,et al.  A tutorial on adaptive MCMC , 2008, Stat. Comput..

[32]  Pierre E. Jacob,et al.  Structural Identifiability Analysis of Fractional Order Models with Applications in Battery Systems , 2015, 1511.01402.

[33]  Hosam K. Fathy,et al.  Maximizing Parameter Identifiability of an Equivalent-Circuit Battery Model Using Optimal Periodic Input Shaping , 2014 .

[34]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[35]  Sumeetpal S. Singh,et al.  On the Particle Gibbs Sampler , 2013 .

[36]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[37]  G. Peters,et al.  Ecological non-linear state space model selection via adaptive particle Markov chain Monte Carlo (AdPMCMC) , 2010, 1005.2238.

[38]  Fredrik Lindsten,et al.  Ancestor Sampling for Particle Gibbs , 2012, NIPS.

[39]  Seyed Mohammad Mahdi Alavi,et al.  Structural identifiability of battery equivalent circuit models , 2015, ArXiv.

[40]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[41]  John Parslow,et al.  On Disturbance State-Space Models and the Particle Marginal Metropolis-Hastings Sampler , 2012, SIAM/ASA J. Uncertain. Quantification.

[42]  P. Fearnhead,et al.  Improved particle filter for nonlinear problems , 1999 .

[43]  Seyed Mohammad Mahdi Alavi,et al.  Identifiability of Generalized Randles Circuit Models , 2015, IEEE Transactions on Control Systems Technology.

[44]  Ursula Klingmüller,et al.  Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood , 2009, Bioinform..

[45]  B. Boukamp A Nonlinear Least Squares Fit procedure for analysis of immittance data of electrochemical systems , 1986 .