Programming Cells to Work for Us

The past decade has witnessed the rise of an exciting new field of engineering: synthetic biology. Synthetic biology is the application of engineering principles to the fundamental components of biology with the aim of programming cells with novel functionalities for utilization in the health, environment, and energy industries. Since its beginnings in the early 2000s, control design principles have been used in synthetic biology to design dynamics, mitigate the effects of uncertainty, and aid modular and layered design. In this review, we provide a basic introduction to synthetic biology, its applications, and its foundations and then describe in more detail how control design approaches have permeated the field since its inception. We conclude with a discussion of pressing challenges in this field that will require new control theory, with the hope of attracting researchers in the control theory community to this exciting engineering area.

[1]  M. Khammash,et al.  Antithetic Integral Feedback Ensures Robust Perfect Adaptation in Noisy Biomolecular Networks. , 2016, Cell systems.

[2]  Christopher A. Voigt,et al.  A Synthetic Genetic Edge Detection Program , 2009, Cell.

[3]  Martin Fussenegger,et al.  Synthetic two-way communication between mammalian cells , 2012, Nature Biotechnology.

[4]  F. Tamanini,et al.  Molecular Mechanisms of the Biological Clock in Cultured Fibroblasts , 2001, Science.

[5]  Jay D. Keasling,et al.  A model for improving microbial biofuel production using a synthetic feedback loop , 2010, Systems and Synthetic Biology.

[6]  Richard M. Murray,et al.  Synthetic circuit for exact adaptation and fold-change detection , 2014, Nucleic acids research.

[7]  D. Vecchio,et al.  Signaling architectures that transmit unidirectional information , 2016 .

[8]  Priscilla E. M. Purnick,et al.  The second wave of synthetic biology: from modules to systems , 2009, Nature Reviews Molecular Cell Biology.

[9]  Domitilla Del Vecchio,et al.  Analyzing and Exploiting the Effects of Protease Sharing in Genetic Circuits , 2017 .

[10]  Declan G. Bates,et al.  Dynamic allocation of orthogonal ribosomes facilitates uncoupling of co-expressed genes , 2017, Nature Communications.

[11]  Mustafa Khammash,et al.  A synthetic integral feedback controller for robust tunable regulation in bacteria , 2017, bioRxiv.

[12]  J. Hespanha,et al.  Optimal feedback strength for noise suppression in autoregulatory gene networks. , 2009, Biophysical journal.

[13]  N. Barkai,et al.  The Cost of Protein Production , 2015, Cell reports.

[14]  Christopher A. Voigt,et al.  Characterization of 582 natural and synthetic terminators and quantification of their design constraints , 2013, Nature Methods.

[15]  W Arber,et al.  DNA modification and restriction. , 1969, Annual review of biochemistry.

[16]  G. Stein,et al.  Respect the unstable , 2003 .

[17]  B. Goodwin Oscillatory behavior in enzymatic control processes. , 1965, Advances in enzyme regulation.

[18]  L. Tsimring,et al.  A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-regulated lysis , 2017, Nature Microbiology.

[19]  M. Bennett,et al.  A fast, robust, and tunable synthetic gene oscillator , 2008, Nature.

[20]  Domitilla Del Vecchio,et al.  Mitigation of ribosome competition through distributed sRNA feedback , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[21]  Domitilla Del Vecchio,et al.  Mitigation of resource competition in synthetic genetic circuits through feedback regulation , 2014, 53rd IEEE Conference on Decision and Control.

[22]  J. Collins,et al.  Synthetic Biology Moving into the Clinic , 2011, Science.

[23]  M. Thattai,et al.  Intrinsic noise in gene regulatory networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[24]  B. Bassler,et al.  Quorum sensing in bacteria. , 2001, Annual review of microbiology.

[25]  T. Hwa,et al.  Interdependence of Cell Growth and Gene Expression: Origins and Consequences , 2010, Science.

[26]  Guoxin Sun,et al.  Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. , 2011, Journal of environmental sciences.

[27]  Eduardo Sontag,et al.  Modular cell biology: retroactivity and insulation , 2008, Molecular systems biology.

[28]  Timothy K Lu,et al.  Engineering genetic circuits that compute and remember , 2014, Nature Protocols.

[29]  Domitilla Del Vecchio,et al.  Loading as a design parameter for genetic circuits , 2016, 2016 American Control Conference (ACC).

[30]  Eduardo Sontag,et al.  Load-Induced Modulation of Signal Transduction Networks , 2011, Science Signaling.

[31]  M. Hoagland,et al.  Feedback Systems An Introduction for Scientists and Engineers SECOND EDITION , 2015 .

[32]  Domitilla Del Vecchio,et al.  A Blueprint for a Synthetic Genetic Feedback Controller to Reprogram Cell Fate. , 2017, Cell systems.

[33]  Domitilla Del Vecchio,et al.  Realizing “integral control” in living cells: How to overcome leaky integration due to dilution? , 2017, bioRxiv.

[34]  K. Foster,et al.  Competition, Not Cooperation, Dominates Interactions among Culturable Microbial Species , 2012, Current Biology.

[35]  R. Kline,et al.  Harold Black and the negative-feedback amplifier , 1993, IEEE Control Systems.

[36]  Domitilla Del Vecchio,et al.  Tuning Genetic Clocks Employing DNA Binding Sites , 2012, PloS one.

[37]  Lingchong You,et al.  Engineered cell-cell communication and its applications. , 2014, Advances in biochemical engineering/biotechnology.

[38]  J. Collins,et al.  A brief history of synthetic biology , 2014, Nature Reviews Microbiology.

[39]  S. Shen-Orr,et al.  Networks Network Motifs : Simple Building Blocks of Complex , 2002 .

[40]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[41]  K. Morris,et al.  The rise of regulatory RNA , 2014, Nature Reviews Genetics.

[42]  G. Stan,et al.  Quantifying cellular capacity identifies gene expression designs with reduced burden , 2015, Nature Methods.

[43]  M. Khammash,et al.  Calcium homeostasis and parturient hypocalcemia: an integral feedback perspective. , 2002, Journal of theoretical biology.

[44]  Eduardo D. Sontag,et al.  Passivity gains and the "secant condition" for stability , 2006, Syst. Control. Lett..

[45]  Eric Klavins,et al.  Cell-cell communication in yeast using auxin biosynthesis and auxin responsive CRISPR transcription factors , 2015, bioRxiv.

[46]  Eran Segal,et al.  Probing the effect of promoters on noise in gene expression using thousands of designed sequences , 2014, Genome research.

[47]  G. Stephanopoulos,et al.  Distributing a metabolic pathway among a microbial consortium enhances production of natural products , 2015, Nature Biotechnology.

[48]  Wilson W Wong,et al.  Synthetic biology in cell-based cancer immunotherapy. , 2015, Trends in biotechnology.

[49]  Lloyd M. Smith,et al.  Fluorescence detection in automated DNA sequence analysis , 1986, Nature.

[50]  Phillip M. Rivera,et al.  Synthetic tunable amplifying buffer circuit in E. coli. , 2015, ACS synthetic biology.

[51]  Francesco Amato,et al.  On the Realization of an Embedded Subtractor Module for the Control of Chemical Reaction Networks , 2016, IEEE Transactions on Automatic Control.

[52]  T. Hwa,et al.  Sequential Establishment of Stripe Patterns in an Expanding Cell Population , 2011, Science.

[53]  Ivan Razinkov,et al.  Sensing array of radically coupled genetic biopixels , 2011, Nature.

[54]  Domitilla Del Vecchio,et al.  Retroactivity Attenuation in Bio-Molecular Systems Based on Timescale Separation , 2011, IEEE Transactions on Automatic Control.

[55]  K. Mullis,et al.  Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. , 1986, Cold Spring Harbor symposia on quantitative biology.

[56]  Christopher A. Voigt,et al.  Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’ , 2011, Nature.

[57]  Erol Cerasi,et al.  Modeling phasic insulin release: immediate and time-dependent effects of glucose. , 2002, Diabetes.

[58]  Domitilla Del Vecchio,et al.  Signaling Architectures that Transmit Unidirectional Information Despite Retroactivity , 2016, bioRxiv.

[59]  C. Pesce,et al.  Regulated cell-to-cell variation in a cell-fate decision system , 2005, Nature.

[60]  James J Collins,et al.  Programmable bacteria detect and record an environmental signal in the mammalian gut , 2014, Proceedings of the National Academy of Sciences.

[61]  U. Alon,et al.  Negative autoregulation speeds the response times of transcription networks. , 2002, Journal of molecular biology.

[62]  J. Hasty,et al.  Synthetic gene network for entraining and amplifying cellular oscillations. , 2002, Physical review letters.

[63]  Sui Huang,et al.  Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. , 2007, Developmental biology.

[64]  Eric Klavins,et al.  Proportional-integral control of stochastic gene regulatory networks , 2010, 49th IEEE Conference on Decision and Control (CDC).

[65]  R. Symons,et al.  Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[66]  A. Oudenaarden,et al.  A Systems-Level Analysis of Perfect Adaptation in Yeast Osmoregulation , 2009, Cell.

[67]  J. Keasling,et al.  Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids , 2012, Nature Biotechnology.

[68]  T. Hwa,et al.  Quantitative Characteristics of Gene Regulation by Small RNA , 2007, PLoS Biology.

[69]  Ahmad S. Khalil,et al.  Synthetic biology: applications come of age , 2010, Nature Reviews Genetics.

[70]  Yoosik Kim,et al.  Substrate-dependent control of MAPK phosphorylation in vivo , 2011, Molecular systems biology.

[71]  Bochong Li,et al.  Synthetic biology: Division of logic labour , 2011, Nature.

[72]  Hans C. Bernstein,et al.  Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity. , 2012, Journal of biotechnology.

[73]  R. McGehee,et al.  Coexistence of species competing for shared resources. , 1976, Theoretical population biology.

[74]  C. Waddington,et al.  The strategy of the genes , 1957 .

[75]  Y. Lai,et al.  Engineering of regulated stochastic cell fate determination , 2013, Proceedings of the National Academy of Sciences.

[76]  Domitilla Del Vecchio,et al.  Resource Competition Shapes the Response of Genetic Circuits. , 2017, ACS synthetic biology.

[77]  D. Vecchio,et al.  Biomolecular Feedback Systems , 2014 .

[78]  S. Belkin,et al.  Where microbiology meets microengineering: design and applications of reporter bacteria , 2010, Nature Reviews Microbiology.

[79]  Jeff Hasty,et al.  Programmable probiotics for detection of cancer in urine , 2015, Science Translational Medicine.

[80]  Mat E. Barnet,et al.  A synthetic Escherichia coli predator–prey ecosystem , 2008, Molecular systems biology.

[81]  Ania-Ariadna Baetica,et al.  Recursively constructing analytic expressions for equilibrium distributions of stochastic biochemical reaction networks , 2017, Journal of The Royal Society Interface.

[82]  Tom Ellis,et al.  Building-in biosafety for synthetic biology. , 2013, Microbiology.

[83]  D. di Bernardo,et al.  miRNAs confer phenotypic robustness to gene networks by suppressing biological noise , 2013, Nature Communications.

[84]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[85]  J. Doyle,et al.  Robust perfect adaptation in bacterial chemotaxis through integral feedback control. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Eduardo D. Sontag Some remarks on a model for immune signal detection and feedback , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[87]  Domitilla Del Vecchio,et al.  Creating Single-Copy Genetic Circuits. , 2016, Molecular cell.

[88]  Richard M. Murray,et al.  Design and Implementation of a Biomolecular Concentration Tracker , 2014, ACS synthetic biology.

[89]  James J Collins,et al.  “Deadman” and “Passcode” microbial kill switches for bacterial containment , 2015, Nature chemical biology.

[90]  S. Basu,et al.  A synthetic multicellular system for programmed pattern formation , 2005, Nature.

[91]  A. Ninfa,et al.  Development of Genetic Circuitry Exhibiting Toggle Switch or Oscillatory Behavior in Escherichia coli , 2003, Cell.

[92]  Domitilla Del Vecchio,et al.  Multi-modality in gene regulatory networks with slow gene binding , 2017, 1705.02330.

[93]  J. C. Willems Behaviors,Latent Variables,and lnterconnections (システム工学への数理的アプローチ特集) , 1999 .

[94]  Ron Weiss,et al.  Isocost Lines Describe the Cellular Economy of Genetic Circuits , 2015, Biophysical journal.

[95]  Deepak Mishra,et al.  A load driver device for engineering modularity in biological networks , 2014, Nature Biotechnology.

[96]  M. Omar Din,et al.  Synchronized cycles of bacterial lysis for in vivo delivery , 2016, Nature.

[97]  Jürgen Kurths,et al.  Timing Cellular Decision Making Under Noise via Cell–Cell Communication , 2009, PloS one.

[98]  Wendell A. Lim,et al.  Bacterial Virulence Proteins as Tools to Rewire Kinase Pathways in Yeast and Immune Cells , 2012, Nature.

[99]  Martin Fussenegger,et al.  A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells , 2016, Nature Communications.

[100]  Timothy K Lu,et al.  Engineering Synthetic Gene Circuits in Living Cells with CRISPR Technology. , 2016, Trends in biotechnology.

[101]  U. Alon,et al.  The incoherent feedforward loop can provide fold-change detection in gene regulation. , 2009, Molecular cell.

[102]  Vadim I. Utkin,et al.  A singular perturbation analysis of high-gain feedback systems , 1977 .

[103]  Manish Kushwaha,et al.  A portable expression resource for engineering cross-species genetic circuits and pathways , 2015, Nature Communications.

[104]  R. Weiss,et al.  Programmed population control by cell–cell communication and regulated killing , 2004, Nature.

[105]  F. Arnold,et al.  Engineering microbial consortia: a new frontier in synthetic biology. , 2008, Trends in biotechnology.

[106]  Yi Li,et al.  Synthetic mammalian transgene negative autoregulation , 2013 .

[107]  Ron Weiss,et al.  The effect of negative feedback on noise propagation in transcriptional gene networks. , 2006, Chaos.

[108]  Jeff Hasty,et al.  Quorum Sensing Communication Modules for Microbial Consortia. , 2016, ACS synthetic biology.

[109]  Richard M. Murray,et al.  Population regulation in microbial consortia using dual feedback control , 2017, bioRxiv.

[110]  A. Arkin,et al.  Contextualizing context for synthetic biology – identifying causes of failure of synthetic biological systems , 2012, Biotechnology journal.

[111]  G. Vinnicombe,et al.  Synchronous long-term oscillations in a synthetic gene circuit , 2016, Nature.

[112]  Chase L. Beisel,et al.  Base pairing small RNAs and their roles in global regulatory networks. , 2010, FEMS microbiology reviews.

[113]  Jörg Stelling,et al.  Counter-intuitive stochastic behavior of simple gene circuits with negative feedback. , 2010, Biophysical journal.

[114]  Domitilla Del Vecchio,et al.  Model order reduction for Linear Noise Approximation using time-scale separation , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[115]  A. Singh Negative Feedback Through mRNA Provides the Best Control of Gene-Expression Noise , 2011, IEEE Transactions on NanoBioscience.

[116]  A. Riggs,et al.  Expression in Escherichia coli of chemically synthesized genes for human insulin. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[117]  L. Serrano,et al.  Engineering stability in gene networks by autoregulation , 2000, Nature.

[118]  T. Hwa,et al.  Growth Rate-Dependent Global Effects on Gene Expression in Bacteria , 2009, Cell.

[119]  Richard M. Murray,et al.  Designing Robustness to Temperature in a Feedforward Loop Circuit , 2013, bioRxiv.

[120]  Christopher A. Voigt,et al.  Advances in genetic circuit design: novel biochemistries, deep part mining, and precision gene expression. , 2013, Current opinion in chemical biology.

[121]  Javier Macía,et al.  Distributed biological computation with multicellular engineered networks , 2011, Nature.

[122]  Domitilla Del Vecchio,et al.  Design and Analysis of an Activator-Repressor Clock in E. Coli , 2007, 2007 American Control Conference.

[123]  Brian Ingalls,et al.  Considerations for using integral feedback control to construct a perfectly adapting synthetic gene network. , 2010, Journal of theoretical biology.

[124]  Wenwu Yu,et al.  An Overview of Recent Progress in the Study of Distributed Multi-Agent Coordination , 2012, IEEE Transactions on Industrial Informatics.

[125]  Yinjie J. Tang,et al.  Decoupling Resource-Coupled Gene Expression in Living Cells. , 2017, ACS synthetic biology.

[126]  Jordan Ang,et al.  Physical constraints on biological integral control design for homeostasis and sensory adaptation. , 2013, Biophysical journal.

[127]  H. Bremer Modulation of Chemical Composition and Other Parameters of the Cell by Growth Rate , 1999 .

[128]  Christopher A. Voigt,et al.  Genetic programs constructed from layered logic gates in single cells , 2012, Nature.

[129]  A. van Oudenaarden,et al.  MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. , 2007, Molecular cell.

[130]  U. Alon An introduction to systems biology : design principles of biological circuits , 2019 .

[131]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[132]  Philippe C. Faucon,et al.  Gene Networks of Fully Connected Triads with Complete Auto-Activation Enable Multistability and Stepwise Stochastic Transitions , 2014, PloS one.

[133]  Domitilla Del Vecchio,et al.  Retroactivity controls the temporal dynamics of gene transcription. , 2013, ACS synthetic biology.

[134]  L. You,et al.  Emergent bistability by a growth-modulating positive feedback circuit. , 2009, Nature chemical biology.

[135]  Indrani Bose,et al.  Noise characteristics of feed forward loops , 2004, Physical biology.

[136]  Jeffrey W. Smith,et al.  Stochastic Gene Expression in a Single Cell , 2022 .

[137]  Jesús Picó,et al.  Control of protein concentrations in heterogeneous cell populations , 2013, 2013 European Control Conference (ECC).

[138]  L. Tsimring,et al.  A synchronized quorum of genetic clocks , 2009, Nature.

[139]  R. Weiss,et al.  Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[140]  Y. Lai,et al.  Engineering of a synthetic quadrastable gene network to approach Waddington landscape and cell fate determination , 2017, eLife.

[141]  Zhen Xie,et al.  Molecular Systems Biology Peer Review Process File Synthetic Incoherent Feed-forward Circuits Show Adaptation to the Amount of Their Genetic Template. Transaction Report , 2022 .

[142]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[143]  G. Balázsi,et al.  Negative autoregulation linearizes the dose–response and suppresses the heterogeneity of gene expression , 2009, Proceedings of the National Academy of Sciences.

[144]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[145]  Domitilla Del Vecchio,et al.  Modularity, context-dependence, and insulation in engineered biological circuits. , 2015, Trends in biotechnology.

[146]  Leandros Tassiulas,et al.  Resource Allocation and Cross-Layer Control in Wireless Networks , 2006, Found. Trends Netw..

[147]  Mustafa Khammash,et al.  An efficient and unbiased method for sensitivity analysis of stochastic reaction networks , 2014, Journal of The Royal Society Interface.

[148]  Eduardo D. Sontag,et al.  Symmetry invariance for adapting biological systems , 2010, SIAM J. Appl. Dyn. Syst..

[149]  J. Keasling,et al.  Microbial engineering for the production of advanced biofuels , 2012, Nature.

[150]  Jay Shankar Singh,et al.  Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. , 2011, Gene.

[151]  M. Elowitz,et al.  Functional roles for noise in genetic circuits , 2010, Nature.