Stabilizing SSR oscillations with a shunt reactor controller for uncertain levels of series compensation

The authors demonstrate how frequency-domain techniques based on I. Horowitz et al.'s (1986) quantitative feedback theory can be applied to the design of fixed-parameter controllers in power systems where the plant parameters have large uncertainties. They present the design of a controller for a shunt reactor to eliminate torsional shaft oscillations in a turbogenerator susceptible to subsynchronous resonance (SSR). The considered parameter uncertainty is the series capacitor compensation level, which has been assumed to vary between 12% and 76%. Simulated transients results of the uncontrolled/controlled system are depicted. >