Investigation of Dynamical Systems Using Symbolic Images: Efficient Implementation and Applications
暂无分享,去创建一个
Michael Schanz | Paul Levi | Viktor Avrutin | George Osipenko | Danny Fundinger | M. Schanz | P. Levi | V. Avrutin | G. Osipenko | Danny Fundinger
[1] Akio Tsuneda,et al. A Gallery of attractors from Smooth Chua's equation , 2005, Int. J. Bifurc. Chaos.
[2] Michael Schanz,et al. Period-Doubling Scenario without flip bifurcations in a One-Dimensional Map , 2005, Int. J. Bifurc. Chaos.
[3] John Guckenheimer,et al. A Survey of Methods for Computing (un)Stable Manifolds of Vector Fields , 2005, Int. J. Bifurc. Chaos.
[4] M. Markus,et al. Fluctuation theorem for a deterministic one-particle system. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[5] Michael Schanz,et al. Border-collision period-doubling scenario. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[6] Suzanne Lynch Hruska. Constructing an expanding metric for dynamical systems in one complex variable , 2004, math/0406003.
[7] G. Osipenko,et al. Computation of the Morse Spectrum , 2004 .
[8] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[9] Oliver Junge,et al. COMPUTING SPECIFIC ISOLATING NEIGHBORHOODS , 2003 .
[10] Torsten Lindström,et al. On the dynamics of discrete food chains: Low- and high-frequency behavior and optimality of chaos , 2002, Journal of mathematical biology.
[11] Konstantin Mischaikow,et al. Topological techniques for efficient rigorous computation in dynamics , 2002, Acta Numerica.
[12] G. Osipenko. Spectrum of a dynamical system and applied symbolic Dynamics , 2000 .
[13] Oliver Junge,et al. Rigorous discretization of subdivision techniques , 2000 .
[14] P. Pilarczyk. COMPUTER ASSISTED METHOD FOR PROVING EXISTENCE OF PERIODIC ORBITS , 1999 .
[15] Bernd Krauskopf,et al. Growing 1D and Quasi-2D Unstable Manifolds of Maps , 1998 .
[16] George Osipenko,et al. Applied symbolic dynamics: attractors and filtrations , 1998 .
[17] Carles Simó,et al. Hill's equation with quasi-periodic forcing: resonance tongues, instability pockets and global phenomena , 1998 .
[18] B. Hao,et al. Applied Symbolic Dynamics and Chaos , 1998 .
[19] Michael Dellnitz,et al. An adaptive subdivision technique for the approximation of attractors and invariant measures , 1998 .
[20] Fern Y. Hunt,et al. Unique ergodicity and the approximation of attractors and their invariant measures using Ulam's method , 1998 .
[21] Bernd Krauskopf,et al. Globalizing Two-Dimensional Unstable Manifolds of Maps , 1998 .
[22] Douglas Lind,et al. An Introduction to Symbolic Dynamics and Coding , 1995 .
[23] John Argyris,et al. An Exploration of Chaos: An Introduction for Natural Scientists and Engineers , 1994 .
[24] Leon O. Chua,et al. Chua's Circuit: an Overview Ten Years Later , 1994, J. Circuits Syst. Comput..
[25] James A. Yorke,et al. Dynamics: Numerical Explorations , 1994 .
[26] M. Gyllenberg,et al. Does migration stabilize local population dynamics? Analysis of a discrete metapopulation model. , 1993, Mathematical biosciences.
[27] James A. Yorke,et al. CALCULATING STABLE AND UNSTABLE MANIFOLDS , 1991 .
[28] P. Cvitanović,et al. Periodic orbits as the skeleton classical and quantum chaos , 1991 .
[29] Procaccia,et al. First-return maps as a unified renormalization scheme for dynamical systems. , 1987, Physical review. A, General physics.
[30] Procaccia,et al. New universal scenarios for the onset of chaos in Lorenz-type flows. , 1986, Physical review letters.
[31] G. Alefeld,et al. Introduction to Interval Computation , 1983 .
[32] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[33] C. Sparrow. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .
[34] C. Hsu. A theory of cell-to-cell mapping dynamical systems , 1980 .
[35] M. Feigenbaum. The universal metric properties of nonlinear transformations , 1979 .
[36] K. Ikeda. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system , 1979 .
[37] C. Conley. Isolated Invariant Sets and the Morse Index , 1978 .
[38] M. Feigenbaum. Quantitative universality for a class of nonlinear transformations , 1978 .
[39] Michael Shub,et al. FILTRATIONS, DECOMPOSITIONS, AND EXPLOSIONS. , 1975 .
[40] M. Rosenzweig,et al. Exploitation in Three Trophic Levels , 1973, The American Naturalist.
[41] N. Goldenfeld. Lectures On Phase Transitions And The Renormalization Group , 1972 .
[42] Robert E. Tarjan,et al. Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..
[43] R. Macarthur,et al. Graphical Representation and Stability Conditions of Predator-Prey Interactions , 1963, The American Naturalist.
[44] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[45] Stephen J. Garland,et al. Algorithm 97: Shortest path , 1962, Commun. ACM.
[46] Edsger W. Dijkstra,et al. A note on two problems in connexion with graphs , 1959, Numerische Mathematik.
[47] B. Marcus. Symbolic Dynamics , 2008, Encyclopedia of Complexity and Systems Science.
[48] Danny Fundinger. Investigating dynamics by multilevel phase space discretization , 2006 .
[49] Bernd Krauskopf,et al. Computing One-Dimensional Stable Manifolds and Stable Sets of Planar Maps without the Inverse , 2004, SIAM J. Appl. Dyn. Syst..
[50] Erik Mosekilde,et al. Bifurcations and chaos in piecewise-smooth dynamical systems , 2003 .
[51] Michael Dellnitz,et al. Chapter 5 - Set Oriented Numerical Methods for Dynamical Systems , 2002 .
[52] Konstantin Mischaikow,et al. Acta Numerica 2002: Topological techniques for efficient rigorous computation in dynamics , 2002 .
[53] O. Junge,et al. The Algorithms Behind GAIO — Set Oriented Numerical Methods for Dynamical Systems , 2001 .
[54] James A. Yorke,et al. Finding all periodic orbits of maps using Newton methods: sizes of basins , 2000 .
[55] George Osipenko,et al. Construction of attractors and filtrations , 1999 .
[56] M. Dellnitz,et al. A subdivision algorithm for the computation of unstable manifolds and global attractors , 1997 .
[57] John Beidler,et al. Data Structures and Algorithms , 1996, Wiley Encyclopedia of Computer Science and Engineering.
[58] Michael Dellnitz,et al. The Computation of Unstable Manifolds Using Subdivision and Continuation , 1996 .
[59] P. Kloeden,et al. Cycles of Spatial Discretizations of Shadowing Dynamical Systems , 1995 .
[60] Konstantin Mischaikow,et al. Exploring global dynamics: a numerical algorithm based on the conley index theory , 1995 .
[61] G. Osipenko,et al. THE PERIODIC POINTS AND SYMBOLIC DYNAMICS , 1994 .
[62] Robert Sedgewick,et al. Algorithms in MODULA-3 , 1993 .
[63] 金子 邦彦. Theory and applications of coupled map lattices , 1993 .
[64] Peter Walters,et al. Symbolic dynamics and its applications , 1992 .
[65] L. Chua. The Genesis of Chua's circuit , 1992 .
[66] C. Simó. On the analytical and numerical approximation of invariant manifolds. , 1990 .
[67] C. Froeschlé,et al. Modern methods in celestial mechanics = Les methodes modernes de la mecanique celeste : théorie des perturbations et chaos intrinsèque , 1990 .
[68] Ronald L. Rivest,et al. Introduction to Algorithms , 1990 .
[69] C. S. Hsu,et al. Cell-to-Cell Mapping , 1987 .
[70] Robert E. Tarjan,et al. Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.
[71] Colin Sparrow,et al. The Lorenz equations , 1982 .
[72] G. P. Szegö,et al. Stability theory of dynamical systems , 1970 .
[73] M. Schanz,et al. ON THE SOFTWARE PACKAGE AnT 4 . 669 FOR THE INVESTIGATION OF DYNAMICAL SYSTEMS , 2022 .