Investigation of Dynamical Systems Using Symbolic Images: Efficient Implementation and Applications

Symbolic images represent a unified framework to apply several methods for the investigation of dynamical systems both discrete and continuous in time. By transforming the system flow into a graph, they allow it to formulate investigation methods as graph algorithms. Several kinds of stable and unstable return trajectories can be localized on this graph as well as attractors, their basins and connecting orbits. Extensions of the framework allow, e.g. the calculation of the Morse spectrum and verification of hyperbolicity. In this work, efficient algorithms and adequate data structures will be presented for the construction of symbolic images and some basic operations on them, like the localization of the chain recurrent set and periodic orbits. The performance of these algorithms will be analyzed and we show their application in practice. The focus is not only put on several standard systems, like Lorenz and Ikeda, but also on some less well-known ones. Additionally, some tuning techniques are presented for an efficient usage of the method.

[1]  Akio Tsuneda,et al.  A Gallery of attractors from Smooth Chua's equation , 2005, Int. J. Bifurc. Chaos.

[2]  Michael Schanz,et al.  Period-Doubling Scenario without flip bifurcations in a One-Dimensional Map , 2005, Int. J. Bifurc. Chaos.

[3]  John Guckenheimer,et al.  A Survey of Methods for Computing (un)Stable Manifolds of Vector Fields , 2005, Int. J. Bifurc. Chaos.

[4]  M. Markus,et al.  Fluctuation theorem for a deterministic one-particle system. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Michael Schanz,et al.  Border-collision period-doubling scenario. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Suzanne Lynch Hruska Constructing an expanding metric for dynamical systems in one complex variable , 2004, math/0406003.

[7]  G. Osipenko,et al.  Computation of the Morse Spectrum , 2004 .

[8]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[9]  Oliver Junge,et al.  COMPUTING SPECIFIC ISOLATING NEIGHBORHOODS , 2003 .

[10]  Torsten Lindström,et al.  On the dynamics of discrete food chains: Low- and high-frequency behavior and optimality of chaos , 2002, Journal of mathematical biology.

[11]  Konstantin Mischaikow,et al.  Topological techniques for efficient rigorous computation in dynamics , 2002, Acta Numerica.

[12]  G. Osipenko Spectrum of a dynamical system and applied symbolic Dynamics , 2000 .

[13]  Oliver Junge,et al.  Rigorous discretization of subdivision techniques , 2000 .

[14]  P. Pilarczyk COMPUTER ASSISTED METHOD FOR PROVING EXISTENCE OF PERIODIC ORBITS , 1999 .

[15]  Bernd Krauskopf,et al.  Growing 1D and Quasi-2D Unstable Manifolds of Maps , 1998 .

[16]  George Osipenko,et al.  Applied symbolic dynamics: attractors and filtrations , 1998 .

[17]  Carles Simó,et al.  Hill's equation with quasi-periodic forcing: resonance tongues, instability pockets and global phenomena , 1998 .

[18]  B. Hao,et al.  Applied Symbolic Dynamics and Chaos , 1998 .

[19]  Michael Dellnitz,et al.  An adaptive subdivision technique for the approximation of attractors and invariant measures , 1998 .

[20]  Fern Y. Hunt,et al.  Unique ergodicity and the approximation of attractors and their invariant measures using Ulam's method , 1998 .

[21]  Bernd Krauskopf,et al.  Globalizing Two-Dimensional Unstable Manifolds of Maps , 1998 .

[22]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[23]  John Argyris,et al.  An Exploration of Chaos: An Introduction for Natural Scientists and Engineers , 1994 .

[24]  Leon O. Chua,et al.  Chua's Circuit: an Overview Ten Years Later , 1994, J. Circuits Syst. Comput..

[25]  James A. Yorke,et al.  Dynamics: Numerical Explorations , 1994 .

[26]  M. Gyllenberg,et al.  Does migration stabilize local population dynamics? Analysis of a discrete metapopulation model. , 1993, Mathematical biosciences.

[27]  James A. Yorke,et al.  CALCULATING STABLE AND UNSTABLE MANIFOLDS , 1991 .

[28]  P. Cvitanović,et al.  Periodic orbits as the skeleton classical and quantum chaos , 1991 .

[29]  Procaccia,et al.  First-return maps as a unified renormalization scheme for dynamical systems. , 1987, Physical review. A, General physics.

[30]  Procaccia,et al.  New universal scenarios for the onset of chaos in Lorenz-type flows. , 1986, Physical review letters.

[31]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[32]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[33]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .

[34]  C. Hsu A theory of cell-to-cell mapping dynamical systems , 1980 .

[35]  M. Feigenbaum The universal metric properties of nonlinear transformations , 1979 .

[36]  K. Ikeda Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system , 1979 .

[37]  C. Conley Isolated Invariant Sets and the Morse Index , 1978 .

[38]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[39]  Michael Shub,et al.  FILTRATIONS, DECOMPOSITIONS, AND EXPLOSIONS. , 1975 .

[40]  M. Rosenzweig,et al.  Exploitation in Three Trophic Levels , 1973, The American Naturalist.

[41]  N. Goldenfeld Lectures On Phase Transitions And The Renormalization Group , 1972 .

[42]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[43]  R. Macarthur,et al.  Graphical Representation and Stability Conditions of Predator-Prey Interactions , 1963, The American Naturalist.

[44]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[45]  Stephen J. Garland,et al.  Algorithm 97: Shortest path , 1962, Commun. ACM.

[46]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[47]  B. Marcus Symbolic Dynamics , 2008, Encyclopedia of Complexity and Systems Science.

[48]  Danny Fundinger Investigating dynamics by multilevel phase space discretization , 2006 .

[49]  Bernd Krauskopf,et al.  Computing One-Dimensional Stable Manifolds and Stable Sets of Planar Maps without the Inverse , 2004, SIAM J. Appl. Dyn. Syst..

[50]  Erik Mosekilde,et al.  Bifurcations and chaos in piecewise-smooth dynamical systems , 2003 .

[51]  Michael Dellnitz,et al.  Chapter 5 - Set Oriented Numerical Methods for Dynamical Systems , 2002 .

[52]  Konstantin Mischaikow,et al.  Acta Numerica 2002: Topological techniques for efficient rigorous computation in dynamics , 2002 .

[53]  O. Junge,et al.  The Algorithms Behind GAIO — Set Oriented Numerical Methods for Dynamical Systems , 2001 .

[54]  James A. Yorke,et al.  Finding all periodic orbits of maps using Newton methods: sizes of basins , 2000 .

[55]  George Osipenko,et al.  Construction of attractors and filtrations , 1999 .

[56]  M. Dellnitz,et al.  A subdivision algorithm for the computation of unstable manifolds and global attractors , 1997 .

[57]  John Beidler,et al.  Data Structures and Algorithms , 1996, Wiley Encyclopedia of Computer Science and Engineering.

[58]  Michael Dellnitz,et al.  The Computation of Unstable Manifolds Using Subdivision and Continuation , 1996 .

[59]  P. Kloeden,et al.  Cycles of Spatial Discretizations of Shadowing Dynamical Systems , 1995 .

[60]  Konstantin Mischaikow,et al.  Exploring global dynamics: a numerical algorithm based on the conley index theory , 1995 .

[61]  G. Osipenko,et al.  THE PERIODIC POINTS AND SYMBOLIC DYNAMICS , 1994 .

[62]  Robert Sedgewick,et al.  Algorithms in MODULA-3 , 1993 .

[63]  金子 邦彦 Theory and applications of coupled map lattices , 1993 .

[64]  Peter Walters,et al.  Symbolic dynamics and its applications , 1992 .

[65]  L. Chua The Genesis of Chua's circuit , 1992 .

[66]  C. Simó On the analytical and numerical approximation of invariant manifolds. , 1990 .

[67]  C. Froeschlé,et al.  Modern methods in celestial mechanics = Les methodes modernes de la mecanique celeste : théorie des perturbations et chaos intrinsèque , 1990 .

[68]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[69]  C. S. Hsu,et al.  Cell-to-Cell Mapping , 1987 .

[70]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[71]  Colin Sparrow,et al.  The Lorenz equations , 1982 .

[72]  G. P. Szegö,et al.  Stability theory of dynamical systems , 1970 .

[73]  M. Schanz,et al.  ON THE SOFTWARE PACKAGE AnT 4 . 669 FOR THE INVESTIGATION OF DYNAMICAL SYSTEMS , 2022 .