The traveling-wave tube in the history of telecommunication

Abstract The traveling-wave tube is a critical subsystem for satellite data transmission. Its role in the history of wireless communications and in the space conquest is significant, but largely ignored, even though the device remains widely used nowadays. This paper presents, albeit non-exhaustively, circumstances and contexts that led to its invention, and its part in the worldwide (in particular in Europe) expansion of TV broadcasting via microwave radio relays and satellites. We also discuss its actual contribution to space applications and its conception. The originality of this paper comes from the wide period covered (from first slow-wave structures in 1889 to present space projects) and from connection points made between this device and commercial exploitations. The appendix deals with an intuitive pedagogical description of the wave–particle interaction.

[1]  L. G. Baldwin,et al.  S-band power amplifier - Improvement program Final report , 1968 .

[2]  A. Laurent,et al.  170W Ka-Band space TWT , 2014, IEEE International Vacuum Electronics Conference.

[3]  D. Escande From thermonuclear fusion to Hamiltonian chaos , 2017, The European Physical Journal H.

[4]  Carter M. Armstrong,et al.  The quest for the ultimate vacuum tube , 2015, IEEE Spectrum.

[5]  H. Kosmahl,et al.  Space tubes - A major challenge , 1982, 1982 International Electron Devices Meeting.

[6]  Ferrié Sur quelques nouvelles applications de la télégraphie sans fil , 1911 .

[7]  Jean Voge Tubes a onde progressive , 1957 .

[8]  Arthur Charles Clarke,et al.  Extra-Terrestrial Relays , 1966 .

[9]  V. K. Zworykin,et al.  Television with cathode-ray tubes , 1933 .

[10]  G. Kornfeld,et al.  From History to Future of Satellite TWT Amplifiers , 2001 .

[11]  J. R. Pierce,et al.  Orbital Radio Relays , 1955 .

[12]  E. Hulburt Ionization in the Atmosphere of Mars , 1929, Proceedings of the Institute of Radio Engineers.

[13]  N. Sawazaki,et al.  New Microwave Repeater System Using Traveling-Wave Tubes , 1956, Proceedings of the IRE.

[14]  Weisi Meng,et al.  Design and Experimental Study of 250-W ${W}$ -band Pulsed TWT With 8-GHz Bandwidth , 2017, IEEE Transactions on Electron Devices.

[15]  I. Tammaru,et al.  Analytical study program to develop the theoretical design of traveling-wave tubes Final report , 1968 .

[16]  R. J. Halsey,et al.  The Birmingham-Manchester-Holme Moss television-cable system , 1952 .

[17]  Jon Gertner,et al.  The Idea Factory: Bell Labs and the Great Age of American Innovation , 2012 .

[18]  B. Jack Copeland,et al.  Screen History: The Haeff Memory and Graphics Tube , 2017, IEEE Annals of the History of Computing.

[19]  J. Pierce,et al.  Theory of the Beam-Type Traveling-Wave Tube , 1947, Proceedings of the IRE.

[20]  H. Hertz Die Kräfte electrischer Schwingungen, behandelt nach der Maxwell'schen Theorie , 1889 .

[21]  J. Malmberg,et al.  Wave enhancement due to a static electric field , 1984 .

[22]  N. E. Feldman Communication Satellite Output Devices , 1965 .

[23]  Yuriy N. Pchelnikov,et al.  Old Know‐How in Helix TWT Development in the USSR , 2003 .

[24]  N. Panagakos,et al.  Two Voyagers set for launch , 1977 .

[25]  H. G. Kosmahl,et al.  Space power tubes - very much alive , 1983 .

[26]  H. Faulkner,et al.  Permanent point-to-point links for relaying television , 1952 .

[27]  D. Escande,et al.  Vlasov equation and N-body dynamics , 2014, 1403.0056.

[28]  H. Hertz,et al.  Ueber die Ausbreitungsgeschwindigkeit der electrodynamischen Wirkungen , 1888 .

[29]  D. B'enisti Envelope equation for the linear and nonlinear propagation of an electron plasma wave, including the effects of Landau damping, trapping, plasma inhomogeneity, and the change in the state of wave , 2016, 1607.05844.

[30]  C. Mayer Exploration of space. , 1952, Military surgeon.

[31]  L. D. Forest Father of radio : the autobiography of Lee de Forest , 1950 .

[32]  Karen Hill,et al.  International Directory of Company Histories , 2009 .

[33]  W.E. Gordon,et al.  A Theory of Radio Scattering in the Troposphere , 1950, Proceedings of the IRE.

[34]  D. C. Rogers The Travelling-Wave Tube as Output Amplifier in Centimetre-Wave Radio Links , 1953 .

[35]  Julian Blanchard,et al.  Hertz, The Discoverer of Electric Waves , 1938, Proceedings of the Institute of Radio Engineers.

[36]  J. P. Laico,et al.  The satellite traveling-wave tube , 1963 .

[37]  A. B. Crawford,et al.  The research background of the Telstar experiment , 1963 .

[38]  G. Dimonte,et al.  Destruction of trapped-particle oscillations , 1977 .

[39]  P. Marzin Les cables hertziens , 1951 .

[40]  R. J. Collier,et al.  The ground station high-power traveling-wave tube , 1963 .

[41]  Michel Atten Chapitre 2 - La construction du CNET (1940-1965) , 1996 .

[42]  Mark A. Basten,et al.  Operation of a compact 1.03 THz power amplifier , 2016, 2016 IEEE International Vacuum Electronics Conference (IVEC).

[43]  H. Klinkrad,et al.  Detecting, tracking and imaging space debris , 2002 .

[44]  R. Kompfner,et al.  The invention of traveling wave tubes , 1976, IEEE Transactions on Electron Devices.

[45]  T. Sarkar,et al.  Maxwell, Hertz, the Maxwellians, and the early history of electromagnetic waves , 2003 .

[46]  André Blanc-Lapierre,et al.  Contribution a l'étude des amplificateurs a ondes progressives , 1946, Ann. des Télécommunications.

[47]  Tsunoda,et al.  Experimental test of the quasilinear theory of the interaction between a weak warm electron beam and a spectrum of waves. , 1987, Physical review letters.

[48]  G.W.S. Griffith,et al.  The London-Birmingham television radio-relay link , 1951 .

[49]  J. Pierce,et al.  Traveling-Wave Tubes , 1947, Proceedings of the IRE.

[50]  R. G. Carter Travelling-wave Tubes , 2018, Nature.

[51]  D. Escande,et al.  Explicit reduction of N-body dynamics to self-consistent particle–wave interaction , 1998 .

[52]  C. L. Cuccia,et al.  Television broadcast from space systems: Technology, costs , 1981 .

[53]  J. T. Mendel,et al.  Helix and coupled-cavity traveling-wave tubes , 1973 .

[54]  David D. Falconer,et al.  History of equalization 1860-1980 , 2011, IEEE Communications Magazine.

[55]  O. E. Dunlap Radio's 100 men of science : biographical narratives of pathfinders in electronics and television , 1944 .

[56]  R. Bonifacio,et al.  HAMILTONIAN MODEL OF A FREE ELECTRON LASER , 1987 .

[57]  Robert L. Wathen The traveling wave tube—A record of its early history , 1954 .

[58]  Roger D. Launius,et al.  Deep Space Chronicle: A Chronology of Deep Space and Planetary Probes 1958-2000 , 2002 .

[59]  M. Chodorow,et al.  A high-efficiency klystron with distributed interaction , 1961, IRE Transactions on Electron Devices.

[60]  Claudio Pellegrini,et al.  The history of X-ray free-electron lasers , 2012 .

[61]  F. Doveil,et al.  Observation of Hamiltonian chaos and its control in wave–particle interaction , 2007 .

[62]  Mischa Schwartz,et al.  A history of transatlantic cables , 2008, IEEE Communications Magazine.

[63]  D. Escande,et al.  Experimental observation of nonlinear synchronization due to a single wave. , 2005, Physical review letters.

[64]  Jack Copeland,et al.  The true history of the traveling wave tube , 2015, IEEE Spectrum.

[65]  D. Guyomarc'h Un tube à onde progressive pour l'étude de la turbulence plasma , 1996 .

[66]  K. Irie,et al.  Discussion on the progress and future of satellite communication (Japan) , 1985 .

[67]  B. Jack Copeland,et al.  Andrew V. Haeff: Enigma of the Tube Era and Forgotten Computing Pioneer , 2015, IEEE Annals of the History of Computing.

[68]  James Clerk Maxwell,et al.  VIII. A dynamical theory of the electromagnetic field , 1865, Philosophical Transactions of the Royal Society of London.

[69]  P. Pierini,et al.  Physics of the high-gain FEL and superradiance , 1990 .

[70]  J. Schafer,et al.  Project Echo: 960-Megacycle, 10-Kilowatt Transmitter , 1961 .

[71]  P. Bertrand,et al.  Long-time discrete particle effects versus kinetic theory in the self-consistent single-wave model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  J. Picard,et al.  Histoire, recherche, telecommunications. Des recherches au CNET (1940-1965) , 1997 .

[73]  A. Freud Aelita Or The Decline Of Mars , 2016 .

[74]  C. C. Cutler,et al.  The nature of power saturation in traveling wave tubes , 1956 .

[75]  J. P. Kinzer,et al.  Engineering aspects of the TH microwave radio relay system , 1961 .

[76]  R. Filep,et al.  Study to forecast and determine characteristics of world satellite communications market , 1983 .

[77]  P. Schmid The feasibility of a direct relay of Apollo spacecraft data via a communication satellite , 1966 .

[78]  R. Bonifacio,et al.  Hamiltonian model and scaling laws for free-electron-laser amplifiers with tapered wiggler , 1988 .

[79]  L. A. Roberts,et al.  The efficiency improvement program for the WJ-274 traveling wave tube , 1967 .

[80]  J. Malmberg,et al.  Effect of a Static Electric Field on the Trapping of Beam Electrons in a Slow Wave Structure , 1982 .

[81]  C. Cutler,et al.  Experimental Determination of Helical-Wave Properties , 1948, Proceedings of the IRE.

[82]  H. Booker,et al.  A Theory of Radio Scattering in the Troposphere , 1950, Proceedings of the IRE.

[83]  R. Kompfner,et al.  The Traveling-Wave Tube as Amplifier at Microwaves , 1947, Proceedings of the IRE.

[84]  Jean Gastaud,et al.  40W Q wideband space TWT , 2018, 2018 IEEE International Vacuum Electronics Conference (IVEC).

[85]  R. W. Friis,et al.  The TD-2 microwave radio relay system , 1951 .

[86]  R. Kompfner,et al.  Transoceanic communication by means of satellites , 1959, Proceedings of the IEEE.

[87]  J.H.H. Merriman,et al.  The Manchester-Kirk O'Shotts television radio-relay system , 1954 .

[88]  J. Pierce History of the Microwave-Tube Art , 1962, Proceedings of the IRE.

[89]  W. Durr,et al.  Thales 150 W C-Band radiation cooled Travelling Wave Tube , 2015, 2015 IEEE International Vacuum Electronics Conference (IVEC).

[90]  Gustave Eiffel Travaux scientifiques exécutés à la tour de trois cents mètres de 1889 à 1900 , 2010 .

[91]  P. Miquel Histoire de la radio et de la télévision , 1985 .

[92]  G.N. Thayer,et al.  A Broad-Band Microwave Relay System between New York and Boston , 1949, Proceedings of the IRE.

[93]  Yves Elskens,et al.  Electromagnetic power and momentum in N-body Hamiltonian approach to wave-particle dynamics in a periodic structure , 2018, EPL (Europhysics Letters).

[94]  Lord Rayleigh F.R.S. XVIII. On the passage of electric waves through tubes, or the vibrations of dielectric cylinders , 1897 .

[95]  M.P.J. Gaudreau,et al.  W-Band Transmitter Upgrade for the Haystack UltraWideband Satellite Imaging Radar (HUSIR) , 2006, 2006 IEEE International Vacuum Electronics Conference held Jointly with 2006 IEEE International Vacuum Electron Sources.

[96]  Lloyd Espenschied,et al.  Transatlantic radio telephony , 1923, Journal of the American Institute of Electrical Engineers.

[97]  D. D. Grieg,et al.  Considerations of Moon-Relay Communication , 1948, Proceedings of the IRE.

[98]  Y. Elskens,et al.  Electron-wave momentum exchange and time domain simulations applied to traveling wave tubes , 2017, 2017 Eighteenth International Vacuum Electronics Conference (IVEC).

[99]  Radar Echoes from the Moon , 1946, Nature.

[100]  G.W.S. Griffith,et al.  The authors' reply to the discussion on "The London-Birmingham television radio-relay link" , 1951 .

[101]  A. Butrica Beyond the Ionosphere: Fifty Years of Satellite Communication , 2015 .

[102]  Eric Smith,et al.  Innovative approach enabled the retirement of TDRS-1 compliant with NASA orbital debris requirements , 2011, 2011 Aerospace Conference.

[103]  William R. Harris,et al.  Rand's role in the evolution of balloon and satellite observation systems and related U.S. space technology , 1988 .

[104]  S.,et al.  DEVICE FOR AND METHOD OF CONTROLLING HIGH FREQUENCY CURRENTs , 2017 .