Influence of volume fraction of component materials and interlayer bond strength on fracture toughness of multi-layer Al 6090-25 vol % SiCp and Al 5182 laminates

Multilayer laminates of Al 6090/SiC/25p MMC and Al 5182 were prepared by hot pressing alternating layers of the component materials at 450{degree}C in an argon gas atmosphere. Tensile properties, interlayer normal and shear bond strengths, and fracture toughness were measured in the T6-treated and untreated conditions. Fracture toughness was also measured as a function of the volume fraction of the MMC component. Yield and tensile strengths increased substantially by the T6 treatment while the total-elongation and interlayer bond strengths decreased even more substantially. Fracture toughness, on the other hand, did not change appreciably by the T6 treatment. The fracture toughness increased perceptibly with an increase in the volume percent of the MMC component.