Partition-based feature screening for categorical data via RKHS embeddings

[1]  Runze Li,et al.  Ultrahigh-Dimensional Multiclass Linear Discriminant Analysis by Pairwise Sure Independence Screening , 2016, Journal of the American Statistical Association.

[2]  R. Tibshirani,et al.  Diagnosis of multiple cancer types by shrunken centroids of gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Lixing Zhu,et al.  Nonparametric feature screening , 2013, Comput. Stat. Data Anal..

[4]  Bernhard Schölkopf,et al.  A Kernel Method for the Two-Sample-Problem , 2006, NIPS.

[5]  Lan Wang,et al.  Quantile-adaptive model-free variable screening for high-dimensional heterogeneous data , 2013, 1304.2186.

[6]  Runze Li,et al.  Feature Screening via Distance Correlation Learning , 2012, Journal of the American Statistical Association.

[7]  Yi Li,et al.  Principled sure independence screening for Cox models with ultra-high-dimensional covariates , 2012, J. Multivar. Anal..

[8]  Jianqing Fan,et al.  Sure independence screening in generalized linear models with NP-dimensionality , 2009, The Annals of Statistics.

[9]  Yang Feng,et al.  Nonparametric independence screening via favored smoothing bandwidth , 2017, Journal of Statistical Planning and Inference.

[10]  Trevor J. Hastie,et al.  Sparse Discriminant Analysis , 2011, Technometrics.

[11]  Nian-Sheng Tang,et al.  Category-Adaptive Variable Screening for Ultra-High Dimensional Heterogeneous Categorical Data , 2020, Journal of the American Statistical Association.

[12]  Runze Li,et al.  Feature Screening for Ultrahigh Dimensional Categorical Data With Applications , 2013, Journal of business & economic statistics : a publication of the American Statistical Association.

[13]  T. Caliński,et al.  A dendrite method for cluster analysis , 1974 .

[14]  Xiangrong Yin,et al.  Expected Conditional Characteristic Function-based Measures for Testing Independence , 2020, Journal of the American Statistical Association.

[15]  Jian Kang,et al.  Partition-based ultrahigh-dimensional variable screening. , 2017, Biometrika.

[16]  Hui Zou,et al.  The fused Kolmogorov filter: A nonparametric model-free screening method , 2014, 1403.7701.

[17]  Yichao Wu,et al.  MARGINAL EMPIRICAL LIKELIHOOD AND SURE INDEPENDENCE FEATURE SCREENING. , 2013, Annals of statistics.

[18]  Runze Li,et al.  Feature Selection for Varying Coefficient Models With Ultrahigh-Dimensional Covariates , 2014, Journal of the American Statistical Association.

[19]  Jun Lu,et al.  Feature screening for multi-response varying coefficient models with ultrahigh dimensional predictors , 2018, Comput. Stat. Data Anal..

[20]  Yang Feng,et al.  A road to classification in high dimensional space: the regularized optimal affine discriminant , 2010, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[21]  Runze Li,et al.  Model-Free Feature Screening for Ultrahigh Dimensional Discriminant Analysis , 2015, Journal of the American Statistical Association.

[22]  R. Tibshirani,et al.  Penalized classification using Fisher's linear discriminant , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[23]  Fionn Murtagh,et al.  A Survey of Recent Advances in Hierarchical Clustering Algorithms , 1983, Comput. J..

[24]  W Y Zhang,et al.  Discussion on `Sure independence screening for ultra-high dimensional feature space' by Fan, J and Lv, J. , 2008 .

[25]  Chenlei Leng,et al.  High dimensional ordinary least squares projection for screening variables , 2015, 1506.01782.