SAPO-34 membranes for CO2/CH4 separations: Effect of Si/Al ratio

Abstract Silicoaluminophosphate (SAPO) membranes with Si/Al gel ratios from 0.05 to 0.3 were synthesized by in situ crystallization onto porous, tubular stainless steel support. Pure SAPO-34 membranes were obtained when the Si/Al ratio was 0.15 or higher. The adsorbate polarizability correlated with the adsorption capacity on SAPO-34, and the amounts of gases adsorbed were in the order: CO2 > CH4 > N2 > H2. The Si/Al ratio did not affect the pore volume significantly, but it changed the CO2 and CH4 adsorption equilibrium constants. The SAPO-34 membranes effectively separated CO2 from CH4 for feed pressures up to 7 MPa. At 295 K, for a pressure drop of 138 kPa and a 50/50 feed, the CO2/CH4 selectivity was 170 for a membrane with a Si/Al gel ratio of 0.15. At 7 MPa, the CO2/CH4 selectivity was 100 and the CO2 permeance was 4 × 10−8 mol/(m2 · s · Pa) at 295 K. This membrane was also separated CO2/N2 (selectivity = 21) and H2/CH4 (selectivity = 32) mixtures at 295 K and a pressure drop of 138 kPa. Competitive adsorption and difference in diffusivities are responsible for CO2/CH4 and CO2/N2 separations, whereas the H2/CH4 separation was due to diffusivity differences. For a membrane with Si/Al gel ratio of 0.1, a mixture of SAPO-34 and SAPO-5 formed, and the CO2/CH4 selectivity was lower.

[1]  John L. Falconer,et al.  Properties and separation performance of Ge-ZSM-5 membranes , 2003 .

[2]  Katsuki Kusakabe,et al.  Separation of co2-ch4 and co2-n2 systems using ion-exchanged fau-type zeolite membranes with different si/al ratios , 2002 .

[3]  J. Falconer,et al.  ZSM-11 membranes: Characterization and pervaporation performance , 2002 .

[4]  J. Falconer,et al.  Improved SAPO‐34 Membranes for CO2/CH4 Separations , 2006 .

[5]  T. Tomita,et al.  Gas separation characteristics of DDR type zeolite membrane , 2004 .

[6]  J. Falconer,et al.  SAPO-34 membranes for CO2/CH4 separation , 2004 .

[7]  M. Tsapatsis,et al.  Synthesis and characterization of oriented MFI membranes prepared by secondary growth , 1998 .

[8]  R. Noble,et al.  Separation of 1,3-propanediol from aqueous solutions using pervaporation through an X-type zeolite membrane , 2001 .

[9]  J. Falconer,et al.  A Ge-substituted ZSM-5 zeolite membrane for the separation of acetic acid from water , 2001 .

[10]  J. Falconer,et al.  Pervaporation of Water/THF Mixtures Using Zeolite Membranes , 2001 .

[11]  R. Gorte,et al.  Calorimetric Heats of Adsorption and Adsorption Isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on NaX, H-ZSM-5, and Na-ZSM-5 Zeolites , 1996 .

[12]  J. Falconer,et al.  Separation of light gas mixtures using SAPO-34 membranes , 2000 .

[13]  Rajamani Krishna,et al.  Modeling Permeation of CO2/CH4, CO2/N2, and N2/CH4 Mixtures Across SAPO-34 Membrane with the Maxwell-Stefan Equations , 2007 .

[14]  K. Aoki,et al.  Separation of Gases with an A-Type Zeolite Membrane , 2000 .

[15]  Jong‐San Chang,et al.  Selective formation of SAPO-5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal heating , 2003 .

[16]  David Olson,et al.  Atlas of Zeolite Framework Types , 2007 .

[17]  R. Szostak,et al.  Molecular Sieves: Principles of Synthesis and Identification , 1997 .

[18]  Yan Xu,et al.  The synthesis of SAPO-34 and CoSAPO-34 from a triethylamine–hydrofluoric acid–water system , 1990 .

[19]  L. Kevan,et al.  Catalytic Conversion of Methanol to Olefins on SAPO-n (n = 11, 34, and 35), CrAPSO-n, and Cr−SAPO-n Molecular Sieves , 2000 .

[20]  Takahiro Kuroda,et al.  Formation of a Y-Type Zeolite Membrane on a Porous α-Alumina Tube for Gas Separation , 1997 .

[21]  Enrico Drioli,et al.  Synthesis and characterization of a mordenite membrane on an α-Al2O3 tubular support , 2000 .

[22]  Brent M. T. Lok,et al.  Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids , 1984 .

[23]  A. Prakash,et al.  Synthesis of SAPO-34: high silicon incorporation in the presence of morpholine as template , 1994 .

[24]  Timothy Christopher Golden,et al.  Gas Adsorption on Silicalite , 1994 .

[25]  K. Balkus,et al.  Preparation and characterization of zeolite X membranes via pulsed-laser deposition , 2002 .

[26]  R. Mahajan,et al.  Pushing the limits on possibilities for large scale gas separation: which strategies? , 2000 .

[27]  J. Falconer,et al.  Effects of impurities on CO2/CH4 separations through SAPO-34 membranes , 2005 .

[28]  Rajamani Krishna,et al.  Interpreting Unary, Binary, and Ternary Mixture Permeation Across a SAPO-34 Membrane with Loading-Dependent Maxwell-Stefan Diffusivities , 2007 .

[29]  Zhongmin Liu,et al.  Crystallization and Si incorporation mechanisms of SAPO-34 , 2002 .

[30]  H. Kita,et al.  Preparation and gas separation performance of zeolite T membrane , 2004 .

[31]  Tracy Q. Gardner,et al.  High-Pressure CO2/CH4 Separation Using SAPO-34 Membranes , 2005 .

[32]  B. Freeman,et al.  Plasticization-Enhanced Hydrogen Purification Using Polymeric Membranes , 2006, Science.

[33]  Mark E. Davis,et al.  Preparation of Zeolite ZSM-5 Membranes by In-Situ Crystallization on Porous α-Al_2O_3 , 1995 .