Physicochemical Data Obtained in Forensic Science Laboratories

[1]  P Mark L Sandercock,et al.  Fire investigation and ignitable liquid residue analysis--a review: 2001-2007. , 2008, Forensic science international.

[2]  Ian W. Evett,et al.  The interpretation of refractive index measurements V. , 1977 .

[3]  G. Zadora Classification of Glass Fragments Based on Elemental Composition and Refractive Index * , 2009, Journal of forensic sciences.

[4]  Grzegorz Zadora,et al.  Pyrolysis-gas chromatography/mass spectrometry analysis as a useful tool in forensic examination of automotive paint traces. , 2008, Journal of chromatography. A.

[5]  Grzegorz Zadora Laundering of illegal fuels - : a forensic chemistry perspective , 2007 .

[6]  D. Thorburn Burns,et al.  A comparison of pyrolysis–gas chromatography–mass spectrometry and fourier transform infrared spectroscopy for the characterisation of automative paint samples , 2005 .

[7]  D. Thorburn Burns,et al.  The discrimination of automotive clear coat paints indistinguishable by Fourier transform infrared spectroscopy via pyrolysis–gas chromatography–mass spectrometry , 2005 .

[8]  C. Champod,et al.  The classification and discrimination of glass fragments using non destructive energy dispersive X-ray microfluorescence. , 2003, Forensic science international.

[9]  Aleksandra Michalska,et al.  Characterisation of paint samples by infrared and Raman spectroscopy for criminalistic purposes , 2011 .

[10]  Grzegorz Zadora,et al.  Glass analysis for forensic purposes—a comparison of classification methods , 2007 .

[11]  Tacha Hicks,et al.  Forensic Interpretation of Glass Evidence , 2000 .

[12]  Grzegorz Zadora,et al.  Evidential value of physicochemical data—comparison of methods of glass database creation , 2010 .

[13]  G Zadora,et al.  The influence of the type of accelerant, type of burned material, time of burning and availability of air on the possibility of detection of accelerants traces. , 2006, Forensic science international.

[14]  G Massonnet,et al.  Identification of organic pigments in coatings: applications to red automotive topcoats. Part III: Raman spectroscopy (NIR FT-Raman). , 1999 .

[15]  A. R. Cassista,et al.  Effects of Annealing on Toughened and Non-Toughened Glass , 1994 .

[16]  Grzegorz Zadora,et al.  Transformations for compositional data with zeros with an application to forensic evidence evaluation , 2011 .

[17]  Grzegorz Zadora,et al.  Differentiation and evaluation of evidence value of styrene acrylic urethane topcoat car paints analysed by pyrolysis-gas chromatography. , 2008, Journal of chromatography. A.

[18]  I. W. Evett,et al.  Original paperThe interpretation of refractive index measurements. III , 1982 .

[19]  L Gusmão,et al.  STR data (AmpFlSTR profiler plus) from north Portugal. , 2001, Forensic science international.

[20]  Janina Zięba-Palus,et al.  Examination of multilayer paint coats by the use of infrared, Raman and XRF spectroscopy for forensic purposes , 2006 .

[21]  Janina Zieba-Palus,et al.  Comparison of the Effectiveness of Tenax TA® and Carbotrap 300® in Concentration of Flammable Liquids Compounds , 2007, Journal of forensic sciences.

[22]  C. Aitken,et al.  A Two‐Level Model for Evidence Evaluation , 2007, Journal of forensic sciences.

[23]  J S Buckleton,et al.  A study of the performance and utility of annealing in forensic glass analysis. , 2005, Forensic science international.

[24]  Grzegorz Zadora,et al.  Evaluation of the evidential value of physicochemical data by a Bayesian network approach , 2010 .

[25]  Eric Stauffer,et al.  ASTM standards for fire debris analysis: a review. , 2003, Forensic science international.

[26]  Grzegorz Zadora,et al.  A Two‐Level Model for Evidence Evaluation in the Presence of Zeros * , 2010, Journal of forensic sciences.

[27]  Grzegorz Zadora,et al.  SEM-EDX—a useful tool for forensic examinations , 2003 .

[28]  Brian Caddy,et al.  Forensic Examination of Glass and Paint : Analysis and Interpretation , 2001 .

[29]  Grzegorz Zadora,et al.  Mixed effects modelling for glass category estimation from glass refractive indices. , 2011, Forensic science international.

[30]  Jose R. Almirall,et al.  Analysis and interpretation of fire scene evidence , 2004 .

[31]  E M Suzuki,et al.  In situ identification and analysis of automotive paint pigments using line segment excitation Raman spectroscopy: I. Inorganic topcoat pigments. , 2001, Journal of forensic sciences.

[32]  G Zadora,et al.  Likelihood ratio model for classification of forensic evidence. , 2009, Analytica chimica acta.

[33]  Grzegorz Zadora,et al.  Gas Chromatography in Forensic Science , 2009 .

[34]  Tatiana Trejos,et al.  Sampling strategies for the analysis of glass fragments by LA-ICP-MS Part I. Micro-homogeneity study of glass and its application to the interpretation of forensic evidence. , 2005, Talanta.

[35]  Tatiana Trejos,et al.  Sampling strategies for the analysis of glass fragments by LA-ICP-MS Part II: Sample size and sample shape considerations. , 2005, Talanta.

[36]  Grzegorz Zadora,et al.  Information-theoretical feature selection using data obtained by scanning electron microscopy coupled with and energy dispersive X-ray spectrometer for the classification of glass traces. , 2011, Analytica chimica acta.

[37]  R. Falcone,et al.  WDXRF, EPMA and SEM/EDX Quantitative Chemical Analyses of Small Glass Samples , 2006 .

[38]  J. Locke,et al.  Automatic Refractive Index Measurement of Glass particles , 1985 .

[39]  JoAnn Buscaglia,et al.  Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS. , 2005, Journal of forensic sciences.

[40]  J. Zieba-Palus,et al.  Application of micro-Fourier transform infrared spectroscopy to the examination of paint samples , 1999 .