Status of the SCExAO instrument: recent technology upgrades and path to a system-level demonstrator for PSI

The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is a high-contrast imaging system installed at the 8-m Subaru Telescope on Maunakea, Hawaii. Due to its unique evolving design, SCExAO is both an instrument open for use by the international scientific community, and a testbed validating new technologies, which are critical to future high-contrast imagers on Giant Segmented Mirror Telescopes (GSMTs). Through multiple international collaborations over the years, SCExAO was able to test the most advanced technologies in wavefront sensors, real-time control with GPUs, low-noise high frame rate detectors in the visible and infrared, starlight suppression techniques or photonics technologies. Tools and interfaces were put in place to encourage collaborators to implement their own hardware and algorithms, and test them on-site or remotely, in laboratory conditions or on-sky. We are now commissioning broadband coronagraphs, the Microwave Kinetic Inductance Detector (MKID) Exoplanet Camera (MEC) for high-speed speckle control, as well as a C-RED ONE camera for both polarization differential imaging and IR wavefront sensing. New wavefront control algorithms are also being tested, such as predictive control, multi-camera machine learning sensor fusion, and focal plane wavefront control. We present the status of the SCExAO instrument, with an emphasis on current collaborations and recent technology demonstrations. We also describe upgrades planned for the next few years, which will evolve SCExAO —and the whole suite of instruments on the IR Nasmyth platform of the Subaru Telescope— to become a system-level demonstrator of the Planetary Systems Imager (PSI), the high-contrast instrument for the Thirty Meter Telescope (TMT).

Romain Laugier | Nick Cvetojevic | Mamadou N'Diaye | Julien Lozi | Naruhisa Takato | Olivier Guyon | Yosuke Minowa | Jeffrey Chilcote | Nemanja Jovanovic | Motohide Tamura | Hideki Takami | Eugene Pluzhnik | Eduardo Bendek | Sébastien Vievard | Jeremy Kasdin | Jun Nishikawa | Tyler D. Groff | Hajime Kawahara | Frans Snik | David Doelman | Frantz Martinache | Peter Tuthill | Christophe Clergeon | Tomoyuki Kudo | Ruslan Belikov | Masa Hayashi | Naoshi Murakami | Alex Walter | Vincent Deo | Thayne Currie | Yoshito Ono | Theodoros Anagnos | Jared Males | Neelay Fruitwala | Steven Bos | Barnaby Norris | Ben Mazin | Jun Hashimoto | Takayuki Kotani | Ananya Sahoo | Kelsey Miller | Sylvestre Lacour | Michael Ireland | Justin Knight | Elsa Huby | Sarah Steiger | Kevin Barjot | Marc-Antoine Martinod | Taichi Uyama | Kristina Davis | Chrstian Schwab | Masayuki Kuzuhara | M. Tamura | R. Belikov | O. Guyon | N. Murakami | F. Martinache | T. Groff | J. Kasdin | S. Lacour | E. Pluzhnik | P. Tuthill | M. Ireland | H. Kawahara | M. Hayashi | M. Kuzuhara | T. Kudo | N. Jovanovic | C. Clergeon | J. Chilcote | T. Kotani | J. Nishikawa | T. Currie | J. Lozi | J. Males | Y. Minowa | N. Takato | B. Norris | E. Huby | E. Bendek | B. Mazin | J. Hashimoto | F. Snik | Theodoros Anagnos | N. Cvetojevic | R. Laugier | H. Takami | S. Vievard | C. Schwab | V. Deo | T. Uyama | Y. Ono | M. Martinod | S. Bos | K. Barjot | J. Knight | K. Miller | A. Sahoo | A. Walter | N. Fruitwala | S. Steiger | D. Doelman | Kristina K. Davis | M. N’diaye

[1]  G. Perrin,et al.  The Subaru Coronagraphic Extreme Adaptive Optics System: Enabling High-Contrast Imaging on Solar-System Scales , 2015, 1507.00017.

[2]  E. Kokubo,et al.  DIRECT IMAGING OF FINE STRUCTURES IN GIANT PLANET-FORMING REGIONS OF THE PROTOPLANETARY DISK AROUND AB AURIGAE , 2011, 1102.4408.

[3]  Frantz Martinache,et al.  On-sky demonstration of low-order wavefront sensing and control with focal plane phase mask coronagraphs , 2015 .

[4]  Frantz Martinache,et al.  Calibration of the island effect: Experimental validation of closed-loop focal plane wavefront control on Subaru/SCExAO , 2017 .

[5]  Frantz Martinache,et al.  On-sky speckle nulling demonstration at small angular separation with SCExAO , 2014 .

[6]  Shane Jacobson,et al.  The infrared Doppler (IRD) instrument for the Subaru telescope: instrument description and commissioning results , 2018, Astronomical Telescopes + Instrumentation.

[7]  Timothy D. Brandt,et al.  SCExAO/CHARIS Direct Imaging Discovery of a 20 au Separation, Low-mass Ratio Brown Dwarf Companion to an Accelerating Sun-like Star , 2020, The Astrophysical Journal Letters.

[8]  C. Fabron,et al.  SPHERE: a planet finder instrument for the VLT , 2006, Astronomical Telescopes + Instrumentation.

[9]  E. Huby,et al.  FIRST, a fibered aperture masking instrument II. Spectroscopy of the Capella binary system at the diffraction limit , 2013, 1310.7879.

[10]  Frantz Martinache,et al.  The compute and control for adaptive optics (CACAO) real-time control software package , 2018, Astronomical Telescopes + Instrumentation.

[11]  G. H. Sanders,et al.  The Thirty Meter Telescope (TMT): An International Observatory , 2013 .

[12]  APC White,et al.  The Planetary Systems Imager for TMT , 2019 .

[13]  Olivier Guyon,et al.  Precision single mode fibre integral field spectroscopy with the RHEA spectrograph , 2016, Astronomical Telescopes + Instrumentation.

[14]  Timothy D. Brandt,et al.  Laboratory and On-sky Validation of the Shaped Pupil Coronagraph’s Sensitivity to Low-order Aberrations With Active Wavefront Control , 2018, 1801.09760.

[15]  Shane Jacobson,et al.  Extra-solar planets exploration using frequency comb: Infrared Doppler instrument for the Subaru telescope (IRD) , 2012, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[16]  Olivier Guyon,et al.  Performance of Subaru adaptive optics system AO188 , 2010, Astronomical Telescopes + Instrumentation.

[17]  Bruce Bumble,et al.  A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics. , 2012, Optics express.

[18]  Frantz Martinache,et al.  Precision Photometric and Astrometric Calibration Using Alternating Satellite Speckles , 2020, The Astronomical Journal.

[19]  Michael J. Escuti,et al.  Fully broadband vAPP coronagraphs enabling polarimetric high contrast imaging , 2018, Astronomical Telescopes + Instrumentation.

[20]  Frantz Martinache,et al.  SCExAO/CHARIS Near-infrared Direct Imaging, Spectroscopy, and Forward-Modeling of κ And b: A Likely Young, Low-gravity Superjovian Companion , 2018, The Astronomical Journal.

[21]  Frantz Martinache,et al.  Subaru Coronagraphic eXtreme Adaptive Optics: on-sky performance of the asymmetric pupil Fourier wavefront sensor , 2016, Astronomical Telescopes + Instrumentation.

[22]  Frantz Martinache,et al.  On-sky verification of Fast and Furious focal-plane wavefront sensing: Moving forward toward controlling the island effect at Subaru/SCExAO , 2020, Astronomy & Astrophysics.

[23]  Julien Lozi,et al.  Subaru AO188 upgrade phase 1: integration of the new real-time system , 2018 .

[24]  Frantz Martinache,et al.  Design of the CHARIS integral field spectrograph for exoplanet imaging , 2013, Optics & Photonics - Optical Engineering + Applications.

[25]  Olivier Guyon,et al.  Overview of the SAPHIRA detector for adaptive optics applications , 2018, Journal of Astronomical Telescopes, Instruments, and Systems.

[26]  Andrew W. Serio,et al.  First light of the Gemini Planet Imager , 2014, Proceedings of the National Academy of Sciences.

[27]  Olivier Guyon,et al.  Spatial linear dark field control: stabilizing deep contrast for exoplanet imaging using bright speckles , 2017 .

[28]  Frantz Martinache,et al.  No Clear, Direct Evidence for Multiple Protoplanets Orbiting LkCa 15: LkCa 15 bcd are Likely Inner Disk Signals , 2019, The Astrophysical Journal.

[29]  Julien Lozi,et al.  Phase-induced amplitude apodization complex-mask coronagraph tolerancing and analysis , 2018, Astronomical Telescopes + Instrumentation.

[30]  Shane Jacobson,et al.  Visible and Near-infrared Laboratory Demonstration of a Simplified Pyramid Wavefront Sensor , 2019, Publications of the Astronomical Society of the Pacific.