Time Reversal Focusing of the Initial State for Kirchhoff Plate

Consider a Kirchhoff plate $\partial_t^2 u + \Delta^2 u - \partial_t^2 \Delta u = 0$ in $\Omega\times (0,T)$, with boundary data $u=\Delta u=0$ on $\partial\Omega \times (0,T)$ and unknown initial data $u(\cdot,0) = u_0$ and $\partial_t u(\cdot,0) = u_1$ in $\Omega$. We study an inverse problem of determining $(u_0,u_1)$ from an interior observation $u|_{\omega\times(0,T)}$. Here $\Omega$ is a bounded domain, $\omega$ a nonempty open subset of $\Omega$, and $T>0$ a suitable time duration. By means of an iterative time reversal technique, we derive an asymptotic formula of reconstructing $(u_0,u_1)$ approximately with a logarithmical convergence rate for smooth initial data. The convergence becomes uniform and exponential when $(\Omega,\omega,T)$ satisfies the geometric control condition introduced by Bardos, Lebeau, and Rauch.

[1]  L. Robbiano,et al.  Fonction de coût et contrôle des solutions des équations hyperboliques , 1995 .

[2]  STATE OBSERVATION PROBLEM FOR A CLASS OF SEMI-LINEAR HYPERBOLIC SYSTEMS , 1999 .

[3]  Masahiro Yamamoto,et al.  Global Uniqueness and Stability for a Class of Multidimensional Inverse Hyperbolic Problems with Two Unknowns , 2003 .

[5]  Masahiro Yamamoto,et al.  Stability, reconstruction formula and regularization for an inverse source hyperbolic problem by a control method , 1995 .

[6]  George Papanicolaou,et al.  Statistical Stability in Time Reversal , 2004, SIAM J. Appl. Math..

[7]  Xiaoyu Fu,et al.  A weighted identity for partial differential operators of second order and its applications , 2006 .

[8]  Enrique Zuazua,et al.  Long-Time Behavior of a Coupled Heat-Wave System Arising in Fluid-Structure Interaction , 2007 .

[9]  Y. H. Wang Global Uniqueness and Stability for an Inverse Plate Problem , 2007 .

[10]  Luc Miller,et al.  Escape Function Conditions for the Observation, Control, and Stabilization of the Wave Equation , 2002, SIAM J. Control. Optim..

[11]  Maarten V. de Hoop,et al.  Retrofocusing of Acoustic Wave Fields by Iterated Time Reversal , 2004, SIAM J. Appl. Math..

[12]  G. Lebeau,et al.  Stabilisation de l’équation des ondes par le bord , 1997 .

[13]  M. Fink,et al.  Mathematical foundations of the time reversal mirror , 2002 .

[14]  GengshengBB Wang,et al.  The Carleman Inequality and Its Application to Periodic Optimal Control Governed by Semilinear Parabolic Differential Equations , 2003 .

[15]  Masahiro Yamamoto,et al.  Global uniqueness and stability for an inverse wave source problem for less regular data , 2001 .

[16]  Masahiro Yamamoto Uniqueness and stability in multidimensional hyperbolic inverse problems , 1999 .

[17]  Jacques-Louis Lions Contrôlabilite exacte et homogénéisation (I) , 1988 .

[18]  M. Fink,et al.  Time reversal of ultrasonic fields. I. Basic principles , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[19]  Josselin Garnier,et al.  Time Reversal for Dispersive Waves in Random Media , 2004, SIAM J. Appl. Math..

[20]  Xu Zhang,et al.  Exact Controllability for Multidimensional Semilinear Hyperbolic Equations , 2007, SIAM J. Control. Optim..

[21]  Mathias Fink,et al.  Acoustic time-reversal mirrors , 2001 .

[22]  D. L. Russell Review: J.-L. Lions, Controlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués , 1990 .

[23]  Kangsheng Liu,et al.  Stabilization of the wave equations with potential and indefinite damping , 2002 .

[24]  G. Lebeau,et al.  Contróle Exact De Léquation De La Chaleur , 1995 .

[25]  Stability , 1973 .

[26]  Nicolas Burq,et al.  Contrôlabilité exacte des ondes dans des ouverts peu réguliers , 1997 .

[27]  C. Bardos,et al.  Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary , 1992 .