The Semantic Web for Complex Network Analysis in Biomedical Domain

Complex networks of direct relevance to biomedicine have not yet been fully mapped largely due to the incompleteness, isolation, and heterogeneity of data. The Semantic Web, by providing a technical framework for the integration and sharing of heterogeneous databases in different domains, can potentially enable more effective complex network mapping and analysis. However, the feasibility of using the Semantic Web for biomedical complex network analysis should be further investigated. In this paper, we propose the semantic graph mining methodology that uses the semantic graph model to integrate graph mining and ontology reasoning for better analyzing biomedical complex networks. We also present reference architecture and a set of recommended biomedical use cases in order to implement this methodology.

[1]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[2]  A. Barabasi,et al.  Network medicine--from obesity to the "diseasome". , 2007, The New England journal of medicine.

[3]  Olivier Bodenreider,et al.  Bio-ontologies: current trends and future directions , 2006, Briefings Bioinform..

[4]  James A. Hendler,et al.  The Semantic Web" in Scientific American , 2001 .

[5]  Amit P. Sheth,et al.  Ranking complex relationships on the semantic Web , 2005, IEEE Internet Computing.

[6]  Ian Horrocks,et al.  OWL Web Ontology Language Reference-W3C Recommen-dation , 2004 .

[7]  Zhaohui Wu,et al.  Towards a Semantic Web of Relational Databases: A Practical Semantic Toolkit and an In-Use Case from Traditional Chinese Medicine , 2006, SEMWEB.

[8]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[9]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[10]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[11]  M. DePamphilis,et al.  HUMAN DISEASE , 1957, The Ulster Medical Journal.

[12]  Dan Brickley,et al.  Rdf vocabulary description language 1.0 : Rdf schema , 2004 .

[13]  Jonathan D. Wren,et al.  Knowledge discovery by automated identification and ranking of implicit relationships , 2004, Bioinform..

[14]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[15]  L. Stein,et al.  OWL Web Ontology Language - Reference , 2004 .

[16]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[17]  Ian Horrocks,et al.  Description Logics as Ontology Languages for the Semantic Web , 2005, Mechanizing Mathematical Reasoning.

[18]  Sougata Mukherjea,et al.  Information retrieval and knowledge discovery utilising a biomedical Semantic Web , 2005, Briefings Bioinform..

[19]  Amit P. Sheth,et al.  Ρ-Queries: enabling querying for semantic associations on the semantic web , 2003, WWW '03.

[20]  Amit P. Sheth,et al.  Semantic analytics on social networks: experiences in addressing the problem of conflict of interest detection , 2006, WWW '06.

[21]  Eric K. Neumann,et al.  What the semantic web could do for the life sciences , 2004 .

[22]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[23]  Eric K. Neumann,et al.  A Life Science Semantic Web: Are We There Yet? , 2005, Science's STKE.

[24]  E. Prud hommeaux,et al.  SPARQL query language for RDF , 2011 .