The complete mitochondrial DNA sequence of Scenedesmus obliquus reflects an intermediate stage in the evolution of the green algal mitochondrial genome.

Two distinct mitochondrial genome types have been described among the green algal lineages investigated to date: a reduced-derived, Chlamydomonas-like type and an ancestral, Prototheca-like type. To determine if this unexpected dichotomy is real or is due to insufficient or biased sampling and to define trends in the evolution of the green algal mitochondrial genome, we sequenced and analyzed the mitochondrial DNA (mtDNA) of Scenedesmus obliquus. This genome is 42,919 bp in size and encodes 42 conserved genes (i.e., large and small subunit rRNA genes, 27 tRNA and 13 respiratory protein-coding genes), four additional free-standing open reading frames with no known homologs, and an intronic reading frame with endonuclease/maturase similarity. No 5S rRNA or ribosomal protein-coding genes have been identified in Scenedesmus mtDNA. The standard protein-coding genes feature a deviant genetic code characterized by the use of UAG (normally a stop codon) to specify leucine, and the unprecedented use of UCA (normally a serine codon) as a signal for termination of translation. The mitochondrial genome of Scenedesmus combines features of both green algal mitochondrial genome types: the presence of a more complex set of protein-coding and tRNA genes is shared with the ancestral type, whereas the lack of 5S rRNA and ribosomal protein-coding genes as well as the presence of fragmented and scrambled rRNA genes are shared with the reduced-derived type of mitochondrial genome organization. Furthermore, the gene content and the fragmentation pattern of the rRNA genes suggest that this genome represents an intermediate stage in the evolutionary process of mitochondrial genome streamlining in green algae.

[1]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[2]  T. Oh-hama,et al.  Formation of protochlorophyll(ide) in wild type and mutant C-2A′ cells of Scenedesmus obliquus , 1980 .

[3]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[4]  K. Bremer SUMMARY OF GREEN PLANT PHYLOGENY AND CLASSIFICATION , 1985, Cladistics : the international journal of the Willi Hennig Society.

[5]  Gertraud Burger,et al.  A collection of programs for nucleic acid and protein analysis, written in FORTRAN 77 for IBM-PC compatible microcomputers , 1986, Nucleic Acids Res..

[6]  J. Vieira,et al.  Production of single-stranded plasmid DNA. , 1987, Methods in enzymology.

[7]  P. Boer,et al.  Genes encoding a subunit of respiratory NADH dehydrogenase (ND1) and a reverse transcriptase‐like protein (RTL) are linked to ribosomal RNA gene pieces in Chlamydomonas reinhardtii mitochondrial DNA. , 1988, The EMBO journal.

[8]  P. Boer,et al.  Scrambled ribosomal RNA gene pieces in chlamydomonas reinhardtii mitochondrial DNA , 1988, Cell.

[9]  J. Felsenstein Phylogenies from molecular sequences: inference and reliability. , 1988, Annual review of genetics.

[10]  M. Melkonian Phylum chlorophyta class prasinophyceae , 1990 .

[11]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[12]  B. Lang,et al.  A rapid, high resolution DNA sequencing gel system. , 1990, Analytical biochemistry.

[13]  U. Kück,et al.  A self-splicing group II intron in the mitochondrial large subunit rRNA (LSUrRNA) gene of the eukaryotic alga Scenedesmus obliquus. , 1990, Nucleic acids research.

[14]  W. Pearson Rapid and sensitive sequence comparison with FASTP and FASTA. , 1990, Methods in enzymology.

[15]  Ø. Moestrup FURTHER STUDIES OF PRESUMEDLY PRIMITIVE GREEN ALGAE, INCLUDING THE DESCRIPTION OF PEDINOPHYCEAE CLASS. NOV. AND RESULTOR GEN. NOV. 1 , 1991 .

[16]  G. L. Floyd,et al.  ASSESSING THE RELATIONSHIPS OF AUTOSPORIC AND ZOOSPORIC CHLOROCOCCALEAN GREEN ALGAE WITH 18S rDNA SEQUENCE DATA 1 , 1992 .

[17]  Rainer Fuchs,et al.  CLUSTAL V: improved software for multiple sequence alignment , 1992, Comput. Appl. Biosci..

[18]  PHYLOGENY OF CARTERIA (CHLOROPHYCEAE) INFERRED FROM MOLECULAR AND ORGANISMAL DATA 1 , 1992 .

[19]  Sergey Steinberg,et al.  Compilation of tRNA sequences and sequences of tRNA genes , 2004, Nucleic Acids Res..

[20]  R. W. Lee,et al.  Comparative structure and genomic organization of the discontinuous mitochondrial ribosomal RNA genes of Chlamydomonas eugametos and Chlamydomonas reinhardtii. , 1994, Journal of molecular biology.

[21]  W. Boss,et al.  Rapid isolation of nuclei from carrot suspension culture cells using a BioNebulizer. , 1994, BioTechniques.

[22]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[23]  Ross A. Overbeek,et al.  The genetic data environment an expandable GUI for multiple sequence analysis , 1994, Comput. Appl. Biosci..

[24]  B F Lang,et al.  Complete sequence of the mitochondrial DNA of the chlorophyte alga Prototheca wickerhamii. Gene content and genome organization. , 1994, Journal of molecular biology.

[25]  M. Melkonian,et al.  PRASINOPHYTES FORM INDEPENDENT LINEAGES WITHIN THE CHLOROPHYTA: EVIDENCE FROM RIBOSOMAL RNA SEQUENCE COMPARISONS 1 , 1994 .

[26]  J. Bonfield,et al.  A new DNA sequence assembly program. , 1995, Nucleic acids research.

[27]  B. Kloareg,et al.  The mitochondrial LSU rDNA of the brown alga Pylaiella littoralis reveals alpha-proteobacterial features and is split by four group IIB introns with an atypical phylogeny. , 1995, Journal of molecular biology.

[28]  R. Gutell,et al.  Phylogeny of the Chlamydomonadales (Chlorophyceae): a comparison of ribosomal RNA gene sequences from the nucleus and the chloroplast. , 1996, Molecular phylogenetics and evolution.

[29]  A. Nedelcu,et al.  DISCONTINUOUS MITOCHONDRIAL AND CHLOROPLAST LARGE SUBUNIT RIBOSOMAL RNAs AMONG GREEN ALGAE: PHYLOGENETIC IMPLICATIONS 1 , 1996 .

[30]  T. Ohama,et al.  UAG is a sense codon in several chlorophycean mitochondria , 1996, Current Genetics.

[31]  T. Friedl The evolution of the Green Algae , 1997 .

[32]  J. Kroymann,et al.  The apocytochrome-b gene in Chlorogonium elongatum (Chlamydomonadaceae): an intronic GIY-YIG ORF in green algal mitochondria , 1997, Current Genetics.

[33]  Fragmented and scrambled mitochondrial ribosomal RNA coding regions among green algae: a model for their origin and evolution. , 1997, Molecular biology and evolution.

[34]  D. Sankoff,et al.  An ancestral mitochondrial DNA resembling a eubacterial genome in miniature , 1997, Nature.

[35]  A. Nedelcu,et al.  Modes and Tempos of Mitochondrial and Chloroplast Genome Evolution in Chlamydomonas : A Comparative Analysis , 1998 .

[36]  T. Ohama,et al.  Distinctive origins of group I introns found in the COXI genes of three gree algae. , 1998, Gene.

[37]  Timothy G. Littlejohn,et al.  The Organelle Genome Database Project (GOBASE) , 1998, Nucleic Acids Res..

[38]  J. Kroymann,et al.  The Mitochondrial Genome of Chlorogonium elongatum Inferred from the Complete Sequence , 1998, Journal of Molecular Evolution.

[39]  A. Nedelcu REVIEW—CONTRASTING MITOCHONDRIAL GENOME ORGANIZATIONS AND SEQUENCE AFFILIATIONS AMONG GREEN ALGAE: POTENTIAL FACTORS, MECHANISMS, AND EVOLUTIONARY SCENARIOS , 1998 .

[40]  A. Nedelcu,et al.  Short repetitive sequences in green algal mitochondrial genomes: potential roles in mitochondrial genome evolution. , 1998, Molecular biology and evolution.

[41]  A degenerate group II intron in the intronless mitochondrial genome of Chlamydomonas reinhardtii: evolutionary implications. , 1998, Molecular biology and evolution.

[42]  B F Lang,et al.  The Complete Mitochondrial DNA Sequences of Nephroselmis olivacea and Pedinomonas minor: Two Radically Different Evolutionary Patterns within Green Algae , 1999, Plant Cell.