Interaction of the Antimicrobial Peptide Polymyxin B1 with Both Membranes of E. coli: A Molecular Dynamics Study

Antimicrobial peptides are small, cationic proteins that can induce lysis of bacterial cells through interaction with their membranes. Different mechanisms for cell lysis have been proposed, but these models tend to neglect the role of the chemical composition of the membrane, which differs between bacterial species and can be heterogeneous even within a single cell. Moreover, the cell envelope of Gram-negative bacteria such as E. coli contains two membranes with differing compositions. To this end, we report the first molecular dynamics simulation study of the interaction of the antimicrobial peptide, polymyxin B1 with complex models of both the inner and outer membranes of E. coli. The results of >16 microseconds of simulation predict that polymyxin B1 is likely to interact with the membranes via distinct mechanisms. The lipopeptides aggregate in the lipopolysaccharide headgroup region of the outer membrane with limited tendency for insertion within the lipid A tails. In contrast, the lipopeptides readily insert into the inner membrane core, and the concomitant increased hydration may be responsible for bilayer destabilization and antimicrobial function. Given the urgent need to develop novel, potent antibiotics, the results presented here reveal key mechanistic details that may be exploited for future rational drug development.

[1]  D. Morrison,et al.  Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. , 1976, Immunochemistry.

[2]  R. Nation,et al.  Pharmacology of polymyxins: new insights into an 'old' class of antibiotics. , 2013, Future microbiology.

[3]  C. Raetz,et al.  Biochemistry of endotoxins. , 1990, Annual review of biochemistry.

[4]  T. Straatsma,et al.  Assessment of the convergence of molecular dynamics simulations of lipopolysaccharide membranes , 2008 .

[5]  P. Overath,et al.  Phase transitions in cells, membranes, and lipids of Escherichia coli. Detection by fluorescent probes, light scattering, and dilatometry. , 1973, Biochemistry.

[6]  S. Funari,et al.  Investigation into the acyl chain packing of endotoxins and phospholipids under near physiological conditions by WAXS and FTIR spectroscopy. , 1999, Journal of structural biology.

[7]  A. Théretz,et al.  Polymyxin B-induced phase separation and acyl chain interdigitation in phosphatidylcholine/phosphatidylglycerol mixtures. , 1983, Biochimica et biophysica acta.

[8]  Berk Hess,et al.  P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation. , 2008, Journal of chemical theory and computation.

[9]  Matthew E Falagas,et al.  Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[10]  A. Maliniak,et al.  Mechanical Properties of Coarse-Grained Bilayers Formed by Cardiolipin and Zwitterionic Lipids. , 2010, Journal of chemical theory and computation.

[11]  Marcus D. Hanwell,et al.  Avogadro: an advanced semantic chemical editor, visualization, and analysis platform , 2012, Journal of Cheminformatics.

[12]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[13]  T. Piggot,et al.  Stability and membrane interactions of an autotransport protein: MD simulations of the Hia translocator domain in a complex membrane environment. , 2013, Biochimica et biophysica acta.

[14]  D. Storm,et al.  Polymyxin and related peptide antibiotics. , 1977, Annual review of biochemistry.

[15]  Thomas J. Piggot,et al.  Molecular Dynamics Simulations of Phosphatidylcholine Membranes: A Comparative Force Field Study. , 2012, Journal of chemical theory and computation.

[16]  M. Kastowsky,et al.  Molecular dynamics simulations of six different fully hydrated monomeric conformers of Escherichia coli re-lipopolysaccharide in the presence and absence of Ca2+. , 1997, Biophysical journal.

[17]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[18]  Andreas Kukol,et al.  Lipid Models for United-Atom Molecular Dynamics Simulations of Proteins. , 2009, Journal of chemical theory and computation.

[19]  A. Bahar,et al.  Antimicrobial Peptides , 2013, Pharmaceuticals.

[20]  John Quale,et al.  Polymyxins Revisited , 2008, Clinical Microbiology Reviews.

[21]  T. Straatsma,et al.  Computer simulation of the rough lipopolysaccharide membrane of Pseudomonas aeruginosa. , 2001, Biophysical journal.

[22]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[23]  M S Sansom,et al.  Simulation studies of the interaction of antimicrobial peptides and lipid bilayers. , 1999, Biochimica et biophysica acta.

[24]  Mark S. P. Sansom,et al.  Lipid Clustering Correlates with Membrane Curvature as Revealed by Molecular Simulations of Complex Lipid Bilayers , 2014, PLoS Comput. Biol..

[25]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[26]  Y. Uchida,et al.  Contribution of each amino acid residue in polymyxin B(3) to antimicrobial and lipopolysaccharide binding activity. , 2009, Chemical & pharmaceutical bulletin.

[27]  Siewert J Marrink,et al.  Antimicrobial peptides in action. , 2006, Journal of the American Chemical Society.

[28]  J. Reymond,et al.  Electrostatics and flexibility drive membrane recognition and early penetration by the antimicrobial peptide dendrimer bH1. , 2013, Chemical communications.

[29]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[30]  K. Brandenburg,et al.  Physical aspects of structure and function of membranes made from lipopolysaccharides and free lipid A , 1984 .

[31]  T. Piggot,et al.  Conformational dynamics and membrane interactions of the E. coli outer membrane protein FecA: a molecular dynamics simulation study. , 2013, Biochimica et biophysica acta.

[32]  R. Hancock,et al.  Interaction of polycationic antibiotics with Pseudomonas aeruginosa lipopolysaccharide and lipid A studied by using dansyl-polymyxin , 1986, Antimicrobial Agents and Chemotherapy.

[33]  Syma Khalid,et al.  Antimicrobial and cell-penetrating peptides: structure, assembly and mechanisms of membrane lysis via atomistic and coarse-grained molecular dynamics simulations. , 2010, Protein and peptide letters.

[34]  D. Storm,et al.  Disruption of the Escherichia coli outer membrane permeability barrier by immobilized polymyxin B. , 1977, The Journal of antibiotics.

[35]  M. B. Banaszak Holl,et al.  Membrane thinning due to antimicrobial peptide binding: an atomic force microscopy study of MSI-78 in lipid bilayers. , 2005, Biophysical journal.

[36]  M. Falagas,et al.  Toxicity of polymyxins: a systematic review of the evidence from old and recent studies , 2006, Critical care.

[37]  Rolando Castillo,et al.  Multiscale molecular dynamics simulations of micelles: coarse-grain for self-assembly and atomic resolution for finer details† , 2012 .

[38]  T. Piggot,et al.  Electroporation of the E. coli and S. Aureus membranes: molecular dynamics simulations of complex bacterial membranes. , 2011, The journal of physical chemistry. B.

[39]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[40]  O. Zerbe,et al.  Interactions of Lipopolysaccharide and Polymyxin Studied by NMR Spectroscopy* , 2009, Journal of Biological Chemistry.

[41]  S. Wilkinson,et al.  Structure of Polymyxin B1 , 1964, Nature.

[42]  Kito Makoto,et al.  Changes in positional distribution of fatty acids in the phospholipids of Escherichia coli after shift-down in temperature , 1972 .

[43]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[44]  S. Nosé,et al.  Constant pressure molecular dynamics for molecular systems , 1983 .

[45]  Erik Strandberg,et al.  How reliable are molecular dynamics simulations of membrane active antimicrobial peptides? , 2014, Biochimica et biophysica acta.

[46]  Roberto D Lins,et al.  Computer simulation of uranyl uptake by the rough lipopolysaccharide membrane of Pseudomonas aeruginosa. , 2008, Biomacromolecules.

[47]  Ming Hu,et al.  Characterization of Polymyxin B-Induced Nephrotoxicity: Implications for Dosing Regimen Design , 2012, Antimicrobial Agents and Chemotherapy.

[48]  M. Schindler,et al.  Interaction of divalent cations and polymyxin B with lipopolysaccharide. , 1979, Biochemistry.

[49]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[50]  Robert A. Campbell,et al.  Novel Anti-bacterial Activities of β-defensin 1 in Human Platelets: Suppression of Pathogen Growth and Signaling of Neutrophil Extracellular Trap Formation , 2011, PLoS pathogens.

[51]  E. Rietschel,et al.  Architecture of the outer membrane of Escherichia coli K12. Phase transitions of the bacteriophage K3 receptor complex. , 1979, European journal of biochemistry.

[52]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[53]  R. J. Green,et al.  Antimicrobial peptide-lipid binding interactions and binding selectivity. , 2007, Biophysical journal.

[54]  Peter J Bond,et al.  Coarse-grained simulations of the membrane-active antimicrobial Peptide maculatin 1.1. , 2008, Biophysical journal.

[55]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[56]  Nicolae Goga,et al.  Membrane poration by antimicrobial peptides combining atomistic and coarse-grained descriptions. , 2010, Faraday discussions.

[57]  L. Craig,et al.  Polymyxin B1.1 Fractionation, Molecular Weight Determination, Amino Acid and Fatty Acid Composition , 1954 .

[58]  D. Peter Tieleman,et al.  A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field , 2003, European Biophysics Journal.

[59]  M. Vaara,et al.  Polymyxin B octapeptide and polymyxin B heptapeptide are potent outer membrane permeability-increasing agents. , 1992, The Journal of antibiotics.

[60]  D Peter Tieleman,et al.  Interactions of the designed antimicrobial peptide MB21 and truncated dermaseptin S3 with lipid bilayers: molecular-dynamics simulations. , 2003, The Biochemical journal.

[61]  Jesse D. Sengillo,et al.  Characterization of a potent antimicrobial lipopeptide via coarse-grained molecular dynamics. , 2012, Biochimica et biophysica acta.

[62]  M. Kito,et al.  Changes in positional distribution of fatty acids in the phospholipids of Escherichia coli after shift-down in temperature. , 1972, Biochimica et biophysica acta.

[63]  R. Peters,et al.  Distribution of lipids in cytoplasmic and outer membranes of Escherichia coli K12. , 1976, Biochimica et biophysica acta.

[64]  I. Sud,et al.  Mechanism of Polymyxin B Resistance in Proteus mirabilis , 1970, Journal of bacteriology.

[65]  M. Kito,et al.  Metabolism of the phosphatidylglycerol molecular species in Escherichia coli. , 1975, European journal of biochemistry.

[66]  Marco M. Domingues,et al.  Biophysical characterization of polymyxin B interaction with LPS aggregates and membrane model systems. , 2012, Biopolymers.

[67]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[68]  Jian Li,et al.  Structure--activity relationships of polymyxin antibiotics. , 2010, Journal of medicinal chemistry.

[69]  A. Verkleij,et al.  Architecture of the outer membrane of Escherichia coli K12. IV. Relationship between outer membrane particles and aqueous pores. , 1979, Biochimica et biophysica acta.

[70]  G. Emmerling,et al.  Order-disorder conformation transition of hydrocarbon chains in lipopolysaccharide from Escherichia coli. , 1977, European journal of biochemistry.

[71]  M. Kito,et al.  Composition of cardiolipin molecular species in Escherichia coli , 1980, Journal of bacteriology.

[72]  W F Drew Bennett,et al.  Statistical Convergence of Equilibrium Properties in Simulations of Molecular Solutes Embedded in Lipid Bilayers. , 2011, Journal of chemical theory and computation.