$L^p$-regularity for fourth order elliptic systems with antisymmetric potentials in higher dimensions

We establish an optimal L-regularity theory for solutions to fourth order elliptic systems with antisymmetric potentials in all supercritical dimensions n ≥ 5: ∆u = ∆(D · ∇u) + div(E · ∇u) + (∆Ω +G) · ∇u+ f in B, where Ω ∈ W (B, som) is antisymmetric and f ∈ L (B), and D,E,Ω, G satisfy the growth condition (GC-4), under the smallness condition of a critical scale invariant norm of ∇u and ∇u. This system was brought into lights from the study of regularity of (stationary) biharmonic maps between manifolds by Lamm-Rivière, Struwe, and Wang. In particular, our results improve Struwe’s Hölder regularity theorem to any Hölder exponent α ∈ (0, 1) when f ≡ 0, and have applications to both approximate biharmonic maps and heat flow of biharmonic maps. As a by-product of the techniques, we also extend the L-regularity theory of harmonic maps by Moser to Rivière-Struwe’s second order elliptic systems with antisymmetric potentials under the growth condition (GC-2) in all dimensions, which confirms an expectation by Sharp.

[1]  Changyou Wang Remarks on biharmonic maps into spheres , 2004 .

[2]  D. Adams A note on Riesz potentials , 1975 .

[3]  Lihe Wang,et al.  A regularity theory of biharmonic maps , 1999 .

[4]  Melanie Rupflin An improved uniqueness result for the harmonic map flow in two dimensions , 2008 .

[5]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[6]  A. Gastel,et al.  Conservation laws for even order systems of polyharmonic map type , 2019, Calculus of Variations and Partial Differential Equations.

[7]  Pawel Strzelecki On biharmonic maps and their generalizations , 2003 .

[8]  Roger Moser Partial Regularity for Harmonic Maps and Related Problems , 2005 .

[9]  T. Rivière Conservation laws for conformally invariant variational problems , 2006, math/0603380.

[10]  Tobias Lamm,et al.  Existence of expanders of the harmonic map flow , 2021, Annales scientifiques de l'École Normale Supérieure.

[11]  R. Moser An L p regularity theory for harmonic maps , 2014 .

[12]  Changyou Wang,et al.  Regularity and uniqueness of a class of biharmonic map heat flows , 2014 .

[13]  P. Laurain,et al.  Angular Energy Quantization for Linear Elliptic Systems with Antisymmetric Potentials and Applications , 2011, 1109.3599.

[14]  Regularity of weak solutions to higher order elliptic systems in critical dimensions , 2020, 2010.09149.

[15]  Christoph Scheven,et al.  Regularity of polyharmonic maps in the critical dimension , 2009 .

[16]  Chang-Lin Xiang,et al.  Regularity of solutions for a fourth‐order elliptic system via Conservation law , 2019, Journal of the London Mathematical Society.

[17]  P. D. Lamberti,et al.  On Burenkov's extension operator preserving Sobolev–Morrey spaces on Lipschitz domains , 2016, 1603.02534.

[18]  T. Lamm,et al.  Conservation Laws for Fourth Order Systems in Four Dimensions , 2006, math/0607484.

[19]  Lawrence C. Evans,et al.  Partial regularity for stationary harmonic maps into spheres , 1991 .

[20]  Gao-Feng Zheng,et al.  The Lamm–Rivière system I: $$L^p$$ regularity theory , 2020, Calculus of Variations and Partial Differential Equations.

[21]  B. Sharp Higher integrability for solutions to a system of critical elliptic PDE , 2011, 1112.1127.

[22]  O. Scherzer,et al.  Weakly Differentiable Functions , 2009 .

[23]  Changyou Wang,et al.  Energy identity of approximate biharmonic maps to Riemannian manifolds and its application , 2011, 1112.6362.

[24]  Anna Zatorska–Goldstein,et al.  On polyharmonic maps into spheres in the critical dimension , 2009 .

[25]  F. Béthuel On the singular set of stationary harmonic maps , 1993 .

[26]  T. Lamm,et al.  Global estimates and energy identities for elliptic systems with antisymmetric potentials , 2014, 1404.7709.

[27]  K. Ho Sobolev‐Jawerth embedding of Triebel‐Lizorkin‐Morrey‐Lorentz spaces and fractional integral operator on Hardy type spaces , 2014 .

[28]  Changyou Wang Biharmonic maps from R4 into a Riemannian manifold , 2004 .

[29]  Frédéric de Longueville Regularität der Lösungen von Systeme (2m)-ter Ordnung vom polyharmonischen Typ in kritischer Dimension , 2018 .

[30]  Changyou Wang,et al.  Stationary biharmonic maps from Rm into a Riemannian manifold , 2004 .

[31]  D. Cheng,et al.  Existence of constant mean curvature 2‐Spheres in Riemannian 3‐spheres , 2020, Communications on Pure and Applied Mathematics.

[32]  J. Sacks,et al.  The Existence of Minimal Immersions of 2-Spheres , 1981 .

[33]  Fanghua Lin,et al.  Energy identity of harmonic map flows from surfaces at finite singular time , 1998 .

[34]  T. Rivière Conformally Invariant Variational Problems , 2012, 1206.2116.

[35]  F. Lin,et al.  Energy quantization for harmonic maps , 2002 .

[36]  P. D. Lamberti,et al.  On Stein's extension operator preserving Sobolev–Morrey spaces , 2018, Mathematische Nachrichten.

[37]  P. Laurain,et al.  Energy quantization for biharmonic maps , 2011, 1112.5393.

[38]  Chang-Lin Xiang,et al.  L regularity theory for even order elliptic systems with antisymmetric first order potentials , 2021, Journal de Mathématiques Pures et Appliquées.

[39]  R. Moser A Variational Problem Pertaining to Biharmonic Maps , 2008 .

[40]  Gabriele Eisenhauer,et al.  Multiple Integrals In The Calculus Of Variations And Nonlinear Elliptic Systems , 2016 .

[41]  R. Moser Weak solutions of a biharmonic map heat flow , 2009 .

[42]  G. Burton Sobolev Spaces , 2013 .

[43]  P. Topping,et al.  Decay estimates for Rivière’s equation, with applications to regularity and compactness , 2011, 1102.0713.