Environmental radiation alters the gut microbiome of the bank vole Myodes glareolus

[1]  Tomoko Y. Steen,et al.  Gut Microbiomics-A Solution to Unloose the Gordian Knot of Biological Effects of Ionizing Radiation. , 2018, The Journal of heredity.

[2]  T. Mappes,et al.  Transcriptional Upregulation of DNA Damage Response Genes in Bank Voles (Myodes glareolus) Inhabiting the Chernobyl Exclusion Zone , 2018, Front. Environ. Sci..

[3]  Jose A Navas-Molina,et al.  Balance Trees Reveal Microbial Niche Differentiation , 2017, mSystems.

[4]  J. Lourenço,et al.  Radioactively contaminated areas: Bioindicator species and biomarkers of effect in an early warning scheme for a preliminary risk assessment. , 2016, Journal of hazardous materials.

[5]  M. Gilbert,et al.  Do Vertebrate Gut Metagenomes Confer Rapid Ecological Adaptation? , 2016, Trends in ecology & evolution.

[6]  W. Garrett,et al.  Gut microbiota, metabolites and host immunity , 2016, Nature Reviews Immunology.

[7]  H. Guillou,et al.  The gut microbiota: a major player in the toxicity of environmental pollutants? , 2016, npj Biofilms and Microbiomes.

[8]  A. Møller,et al.  Ionizing radiation, antioxidant response and oxidative damage: A meta-analysis. , 2016, The Science of the total environment.

[9]  A. Møller,et al.  Are Organisms Adapting to Ionizing Radiation at Chernobyl? , 2016, Trends in ecology & evolution.

[10]  A. Møller,et al.  Resistance of Feather-Associated Bacteria to Intermediate Levels of Ionizing Radiation near Chernobyl , 2016, Scientific Reports.

[11]  M. Kuefer The Encyclopedia Of Mammals , 2016 .

[12]  W. D. de Vos,et al.  Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal , 2015, Nature Communications.

[13]  K. Pollard,et al.  Marked seasonal variation in the wild mouse gut microbiota , 2015, The ISME Journal.

[14]  A. Møller,et al.  Strong effects of ionizing radiation from Chernobyl on mutation rates , 2015, Scientific Reports.

[15]  K. Svenson,et al.  Diet dominates host genotype in shaping the murine gut microbiota. , 2015, Cell host & microbe.

[16]  B. Kuster,et al.  High-fat diet alters gut microbiota physiology in mice , 2013, The ISME Journal.

[17]  Lawrence A. David,et al.  Diet rapidly and reproducibly alters the human gut microbiome , 2013, Nature.

[18]  Jesse R. Zaneveld,et al.  Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences , 2013, Nature Biotechnology.

[19]  K. Nelson,et al.  Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes , 2013, The ISME Journal.

[20]  O. Singh,et al.  Bioremediation: a genuine technology to remediate radionuclides from the environment , 2013, Microbial biotechnology.

[21]  P. Turnbaugh,et al.  Xenobiotics Shape the Physiology and Gene Expression of the Active Human Gut Microbiome , 2013, Cell.

[22]  Eleazar Eskin,et al.  Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. , 2013, Cell metabolism.

[23]  E. Martens,et al.  How glycan metabolism shapes the human gut microbiota , 2012, Nature Reviews Microbiology.

[24]  J. Clemente,et al.  Human gut microbiome viewed across age and geography , 2012, Nature.

[25]  A. Møller,et al.  Sunlight-Exposed Biofilm Microbial Communities Are Naturally Resistant to Chernobyl Ionizing-Radiation Levels , 2011, PloS one.

[26]  M. Kozakiewicz,et al.  Long-distance movements of individuals in a free-living bank vole population: an important element of male breeding strategy , 2007, Acta Theriologica.

[27]  A. Møller,et al.  Reduced abundance of insects and spiders linked to radiation at Chernobyl 20 years after the accident , 2009, Biology Letters.

[28]  D. Jonkers,et al.  Review article: the role of butyrate on colonic function , 2007, Alimentary pharmacology & therapeutics.

[29]  A. Møller,et al.  Biological consequences of Chernobyl: 20 years on. , 2006, Trends in ecology & evolution.

[30]  R. Baker,et al.  Reconstruction of radioactive plume characteristics along Chernobyl's Western Trace. , 2004, Journal of environmental radioactivity.

[31]  F. W. Whicker,et al.  Concentrations and dose rate estimates of 134137cesium and 90strontium in small mammals at chornobyl, Ukraine , 2000 .

[32]  V. Romanovskaya,et al.  Effect of radioactive contamination on soil bacteria in the 10-km zone around the Chernobyl nuclear power plant , 1998 .