Stability and ocular biodistribution of topically administered PLGA nanoparticles

[1]  Jangwook P. Jung,et al.  Distribution of polymeric nanoparticles in the eye: implications in ocular disease therapy , 2021, Journal of Nanobiotechnology.

[2]  D. D. Nguyen,et al.  Advancing the stimuli response of polymer-based drug delivery systems for ocular disease treatment , 2020 .

[3]  D. D. Nguyen,et al.  Long-acting mucoadhesive thermogels for improving topical treatments of dry eye disease. , 2020, Materials science & engineering. C, Materials for biological applications.

[4]  D. D. Nguyen,et al.  Effects of shell thickness of hollow poly(lactic acid) nanoparticles on sustained drug delivery for pharmacological treatment of glaucoma. , 2020, Acta biomaterialia.

[5]  E. Duh,et al.  Controlled release of corticosteroid with biodegradable nanoparticles for treating experimental autoimmune uveitis , 2019, Journal of controlled release : official journal of the Controlled Release Society.

[6]  C. Astete,et al.  Topical nanodelivery system of lutein for the prevention of selenite-induced cataract. , 2019, Nanomedicine : nanotechnology, biology, and medicine.

[7]  P. Bernstein,et al.  What do we know about the macular pigment in AMD: the past, the present, and the future , 2018, Eye.

[8]  Chia-Yang Liu,et al.  RNA nanoparticle distribution and clearance in the eye after subconjunctival injection with and without thermosensitive hydrogels , 2018, Journal of controlled release : official journal of the Controlled Release Society.

[9]  Linfeng Wu,et al.  Nanoparticles for drug delivery to the anterior segment of the eye. , 2017, Advanced drug delivery reviews.

[10]  A. Ambrósio,et al.  Opening eyes to nanomedicine: Where we are, challenges and expectations on nanotherapy for diabetic retinopathy. , 2017, Nanomedicine : nanotechnology, biology, and medicine.

[11]  S. G. Harroun,et al.  Super-Cationic Carbon Quantum Dots Synthesized from Spermidine as an Eye Drop Formulation for Topical Treatment of Bacterial Keratitis. , 2017, ACS nano.

[12]  U. Kompella,et al.  Ocular Drug Delivery. , 2017, Handbook of experimental pharmacology.

[13]  D. Katti,et al.  Physicochemical properties of core-shell type nanoparticles govern their spatiotemporal biodistribution in the eye. , 2016, Nanomedicine : nanotechnology, biology, and medicine.

[14]  Sandra Carberry,et al.  The Past, the Present, and the Future , 2016, UMAP.

[15]  D. Katti,et al.  Understanding the influence of surface properties of nanoparticles and penetration enhancers for improving bioavailability in eye tissues in vivo. , 2016, International journal of pharmaceutics.

[16]  A. Mitra,et al.  Ocular Drug Delivery , 1990 .

[17]  F. Lallemand,et al.  Drug-loaded nanocarriers for back-of-the-eye diseases- formulation limitations , 2015 .

[18]  M. Prausnitz,et al.  Formulation to target delivery to the ciliary body and choroid via the suprachoroidal space of the eye using microneedles. , 2015, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[19]  Li Tang,et al.  Corticosteroid-loaded biodegradable nanoparticles for prevention of corneal allograft rejection in rats. , 2015, Journal of controlled release : official journal of the Controlled Release Society.

[20]  V. Préat,et al.  PLGA-based nanoparticles: an overview of biomedical applications. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[21]  Elias Fattal,et al.  Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells , 2011, International journal of nanomedicine.

[22]  Hirenkumar K. Makadia,et al.  Poly Lactic-co-Glycolic Acid ( PLGA ) as Biodegradable Controlled Drug Delivery Carrier , 2011 .

[23]  S. Young,et al.  Drug delivery to the posterior segment of the eye. , 2011, Drug discovery today.

[24]  Maria Jose Alonso,et al.  Chitosan-based nanostructures: a delivery platform for ocular therapeutics. , 2010, Advanced drug delivery reviews.

[25]  A. Loewenstein,et al.  Drug delivery to the posterior segment of the eye. , 2010, Developments in ophthalmology.

[26]  Ashim K. Mitra,et al.  Recent Perspectives in Ocular Drug Delivery , 2009, Pharmaceutical Research.

[27]  S. Krishnakumar,et al.  Nanotechnology in ocular drug delivery. , 2008, Drug discovery today.

[28]  A. Urtti,et al.  Current and future ophthalmic drug delivery systems. A shift to the posterior segment. , 2008, Drug discovery today.

[29]  Mark R Prausnitz,et al.  Model of transient drug diffusion across cornea. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[30]  E. Gottlieb,et al.  Mitochondria-derived Reactive Oxygen Species Mediate Blue Light–induced Death of Retinal Pigment Epithelial Cells¶ , 2004, Photochemistry and photobiology.

[31]  Eyal Gottlieb,et al.  Mitochondria‐derived Reactive Oxygen Species Mediate Blue Light‐induced Death of Retinal Pigment Epithelial Cells ¶ , 2004, Photochemistry and photobiology.

[32]  N. Krinsky Possible biologic mechanisms for a protective role of xanthophylls. , 2002, The Journal of nutrition.

[33]  D. K. Majumdar,et al.  Permeation through cornea. , 2001, Indian journal of experimental biology.