Fast convergence PIRKN-type PC methods with Adams-type predictors

This paper discusses predictor-corrector iteration schemes (PC iteration schemes) based on direct collocation-based Runge-Kutta-Nystr??m corrector methods (RKN corrector methods) for solving nonstiff initial-value problems (IVPs) for systems of special second-order differential equations y??(t)=f(y(t)). Our approach is to regard the well-known parallel-iterated RKN methods (PIRKN methods) as PC iteration processes in which the simple, low-order last step value predictors are replaced with the high-order Adams- type predictors. Moreover, the parameters of the new direct collocation-based RKN corrector methods are chosen in such a way that the convergence rate of the considered PC iteration processes is optimized. In this way, we obtain parallel PC methods with fast convergence and high-accurate predictions. Application of the resulting parallel PC methods to a few widely-used test problems reveals that the sequential costs are very much reduced when compared with the parallel and sequential explicit RKN methods from the literature. ?? 2001 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint. Author Keywords: Predictor-corrector methods; Runge-Kutta-Nystr??m methods; Stability Parallelism

[1]  Desmond J. Higham,et al.  Parallel defect control , 1991 .

[2]  E. Hairer Unconditionally stable methods for second order differential equations , 1979 .

[3]  Nguyen Huu Cong,et al.  Stability of collocation-based Runge-Kutta-Nyström methods , 1991 .

[4]  Ernst Hairer A One-step Method of Order 10 for y″=f(x,y) , 1982 .

[5]  D. Arnold,et al.  Computer Solution of Ordinary Differential Equations. , 1981 .

[6]  Ernst Hairer Méthodes de Nyström pour l'équation différentielley″=f(x, y) , 1976 .

[7]  L. Shampine,et al.  Computer solution of ordinary differential equations : the initial value problem , 1975 .

[8]  E. Hairer,et al.  Solving Ordinary ,Differential Equations I, Nonstiff problems/E. Hairer, S. P. Norsett, G. Wanner, Second Revised Edition with 135 Figures, Vol.: 1 , 2000 .

[9]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[10]  T. E. Hull,et al.  Comparing Numerical Methods for Ordinary Differential Equations , 1972 .

[11]  Kevin Burrage,et al.  Parallel and sequential methods for ordinary differential equations , 1995, Numerical analysis and scientific computation.

[12]  N. Cong Explicit pseudo two-step RKN methods with stepsize control ? ? This work was partly supported by DAA , 2001 .

[13]  N. Cong,et al.  Explicit symmetric Runge-Kutta-Nyström methods for parallel computers , 1996 .

[14]  Nguyen Huu Cong Note on the performance of direct and indirect Runge-Kutta-Nystro¨m methods , 1992 .

[15]  E. Fehlberg Eine Runge-Kutta-Nyström-Formel 9-ter Ordnung mit Schrittweitenkontrolle für Differentialgleichungenx =f(t, x) , 1981 .

[16]  R. Weiner,et al.  A general class of explicit pseudo two-step RKN methods on parallel computers , 1999 .

[17]  B. P. Sommeijer,et al.  Explicit, high-order Runge-Kutta-Nystro¨m methods for parallel computers , 1993 .

[18]  N. Cong,et al.  Explicit Parallel Two-Step Runge-Kutta-Nyström Methods , 1996 .

[19]  Nguyen Huu Cong,et al.  RKN-Type Parallel Block PC Methods with Lagrange-Type Predictors , 1998 .

[20]  Helmut Podhaisky,et al.  Runge–Kutta–Nyström‐type parallel block predictor–corrector methods , 1999, Adv. Comput. Math..

[21]  S. Filippi,et al.  Ein Runge-Kutta-Nyström-Formelpaar der Ordnung 10(11) für Differentialgleichungen der Form y′ = f(x, y) , 1986 .

[22]  Nguyen Huu Cong,et al.  Parallel block pc methods with rkn-type correctors and adams-type predictors , 2000, Int. J. Comput. Math..