Fast convergence PIRKN-type PC methods with Adams-type predictors
暂无分享,去创建一个
[1] Desmond J. Higham,et al. Parallel defect control , 1991 .
[2] E. Hairer. Unconditionally stable methods for second order differential equations , 1979 .
[3] Nguyen Huu Cong,et al. Stability of collocation-based Runge-Kutta-Nyström methods , 1991 .
[4] Ernst Hairer. A One-step Method of Order 10 for y″=f(x,y) , 1982 .
[5] D. Arnold,et al. Computer Solution of Ordinary Differential Equations. , 1981 .
[6] Ernst Hairer. Méthodes de Nyström pour l'équation différentielley″=f(x, y) , 1976 .
[7] L. Shampine,et al. Computer solution of ordinary differential equations : the initial value problem , 1975 .
[8] E. Hairer,et al. Solving Ordinary ,Differential Equations I, Nonstiff problems/E. Hairer, S. P. Norsett, G. Wanner, Second Revised Edition with 135 Figures, Vol.: 1 , 2000 .
[9] J. Butcher. The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .
[10] T. E. Hull,et al. Comparing Numerical Methods for Ordinary Differential Equations , 1972 .
[11] Kevin Burrage,et al. Parallel and sequential methods for ordinary differential equations , 1995, Numerical analysis and scientific computation.
[12] N. Cong. Explicit pseudo two-step RKN methods with stepsize control ? ? This work was partly supported by DAA , 2001 .
[13] N. Cong,et al. Explicit symmetric Runge-Kutta-Nyström methods for parallel computers , 1996 .
[14] Nguyen Huu Cong. Note on the performance of direct and indirect Runge-Kutta-Nystro¨m methods , 1992 .
[15] E. Fehlberg. Eine Runge-Kutta-Nyström-Formel 9-ter Ordnung mit Schrittweitenkontrolle für Differentialgleichungenx =f(t, x) , 1981 .
[16] R. Weiner,et al. A general class of explicit pseudo two-step RKN methods on parallel computers , 1999 .
[17] B. P. Sommeijer,et al. Explicit, high-order Runge-Kutta-Nystro¨m methods for parallel computers , 1993 .
[18] N. Cong,et al. Explicit Parallel Two-Step Runge-Kutta-Nyström Methods , 1996 .
[19] Nguyen Huu Cong,et al. RKN-Type Parallel Block PC Methods with Lagrange-Type Predictors , 1998 .
[20] Helmut Podhaisky,et al. Runge–Kutta–Nyström‐type parallel block predictor–corrector methods , 1999, Adv. Comput. Math..
[21] S. Filippi,et al. Ein Runge-Kutta-Nyström-Formelpaar der Ordnung 10(11) für Differentialgleichungen der Form y′ = f(x, y) , 1986 .
[22] Nguyen Huu Cong,et al. Parallel block pc methods with rkn-type correctors and adams-type predictors , 2000, Int. J. Comput. Math..