Inverse Design of Metal Nanoparticles’ Morphology

The current praxis of designing plasmonic devices by hand, mainly guided by qualitative arguments, often derived from simplified semianalytical theories, significantly limits the accessible design space and, consequently, the achievable performances. In the present work, we propose a rigorous inverse design method to engineer three-dimensional metal nanoparticles according to a preassigned objective function, coupling an efficient global optimization algorithm to a full-retarded, electromagnetic solver based on the surface integral equation method. Thus, we use the proposed strategy to design the morphology of metal nanoparticles, maximizing the electric field average on their surface. We performed the optimization by varying the exciting wavelength in the ultraviolet and visible spectral ranges and the particle’s material among the most used plasmonic materials, namely, gold, silver, and aluminum, obtaining different corresponding optimal shapes. General design criteria of nanoparticle’s shape and size f...

[1]  Andrea Toma,et al.  Plasmon resonance tuning in metal nanostars for surface enhanced Raman scattering , 2014, Nanotechnology.

[2]  L. Dal Negro,et al.  Enhancement of Molecular Fluorescence in the UV Spectral Range Using Aluminum Nanoantennas , 2014, Plasmonics.

[3]  V. Paraforou,et al.  Design and full-wave analysis of supershaped patch antennas , 2013 .

[4]  George C Schatz,et al.  Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. , 2013, Physical chemistry chemical physics : PCCP.

[5]  M. Siegel,et al.  Linear and nonlinear optical characterization of aluminum nanoantennas. , 2013, Nano letters.

[6]  Steve Blair,et al.  Optical antenna design for fluorescence enhancement in the ultraviolet. , 2012, Optics express.

[7]  L. Dal Negro,et al.  Surface integral formulations for the design of plasmonic nanostructures. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  Mark W. Knight,et al.  Aluminum plasmonic nanoantennas. , 2012, Nano letters.

[9]  D Macías,et al.  Heuristic optimization for the design of plasmonic nanowires with specific resonant and scattering properties. , 2012, Optics express.

[10]  Bert Hecht,et al.  Evolutionary optimization of optical antennas. , 2012, Physical review letters.

[11]  Luca Dal Negro,et al.  Genetically engineered plasmonic nanoarrays. , 2012, Nano letters.

[12]  A. Zayats,et al.  Nonlinear plasmonics , 2012, Nature Photonics.

[13]  M. Stockman Nanoplasmonics: past, present, and glimpse into future. , 2011, Optics express.

[14]  R. Rodríguez-Oliveros,et al.  Localized surface-plasmon resonances on single and coupled nanoparticles through surface integral equations for flexible surfaces. , 2011, Optics express.

[15]  Claire M. Cobley,et al.  Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. , 2011, Chemical reviews.

[16]  P. Adam,et al.  Metal nanostars: Stochastic optimization of resonant scattering properties , 2011 .

[17]  Stefan A. Maier,et al.  High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. , 2011, Nano letters.

[18]  P. Ginzburg,et al.  Resonances on-demand for plasmonic nano-particles. , 2011, Nano letters.

[19]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[20]  Luca Dal Negro,et al.  Particle-swarm optimization of broadband nanoplasmonic arrays. , 2010, Optics letters.

[21]  Thomas Taubner,et al.  Optical antenna thermal emitters , 2009 .

[22]  S. Kawata,et al.  Plasmonics for near-field nano-imaging and superlensing , 2009 .

[23]  Sven Burger,et al.  Comparison of electromagnetic field solvers for the 3D analysis of plasmonic nanoantennas , 2009, Optical Metrology.

[24]  David B. Bogy,et al.  Data storage: Heat-assisted magnetic recording , 2009 .

[25]  Younan Xia,et al.  Chemical synthesis of novel plasmonic nanoparticles. , 2009, Annual review of physical chemistry.

[26]  Paul Mulvaney,et al.  Plasmon coupling of gold nanorods at short distances and in different geometries. , 2009, Nano letters.

[27]  Luca Dal Negro,et al.  Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS). , 2009, Optics express.

[28]  C. Hafner,et al.  Comparison of Numerical Methods for the Analysis of Plasmonic Structures , 2009 .

[29]  James Pond,et al.  Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules. , 2009, Analytical chemistry.

[30]  Shigang Sun,et al.  Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis. , 2008, Angewandte Chemie.

[31]  M. Dickinson,et al.  Nanometric optical tweezers based on nanostructured substrates , 2008 .

[32]  K. Saraswat,et al.  Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna , 2008 .

[33]  Joseph R Lakowicz,et al.  Use of aluminum films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region , 2008, SPIE BiOS.

[34]  Daniel Weile,et al.  Electromagnetic Metamaterials: Physics and Engineering Explorations (Engheta, N. and Ziolkowski, R.W.; 2006) [Book Review] , 2007, IEEE Antennas and Propagation Magazine.

[35]  J. Lakowicz,et al.  Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region. , 2007, Analytical chemistry.

[36]  S. Glotzer,et al.  Anisotropy of building blocks and their assembly into complex structures. , 2007, Nature materials.

[37]  Federico Capasso,et al.  Optical properties of surface plasmon resonances of coupled metallic nanorods. , 2007, Optics express.

[38]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[39]  J. Hafner,et al.  Optical properties of star-shaped gold nanoparticles. , 2006, Nano letters.

[40]  Younan Xia,et al.  Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver , 2006 .

[41]  M. Moskovits,et al.  Surface-enhanced raman scattering : physics and applications , 2006 .

[42]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[43]  P. Yla-Oijala,et al.  Application of combined field Integral equation for electromagnetic scattering by dielectric and composite objects , 2005, IEEE Transactions on Antennas and Propagation.

[44]  S. Bozhevolnyi,et al.  Surface plasmon polariton based modulators and switches operating at telecom wavelengths , 2004 .

[45]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[46]  C. Murphy,et al.  Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. , 2004, Journal of the American Chemical Society.

[47]  Encai Hao,et al.  Synthesis and Optical Properties of ``Branched'' Gold Nanocrystals , 2004 .

[48]  John Ballato,et al.  Monopod, bipod, tripod, and tetrapod gold nanocrystals. , 2003, Journal of the American Chemical Society.

[49]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[50]  J. Gielis A generic geometric transformation that unifies a wide range of natural and abstract shapes. , 2003, American journal of botany.

[51]  János D. Pintér,et al.  Global Optimization: Software, Test Problems, and Applications , 2002 .

[52]  C. Mirkin,et al.  Photoinduced Conversion of Silver Nanospheres to Nanoprisms , 2001, Science.

[53]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[54]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[55]  J. S. Chen,et al.  The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell's equations , 1997 .

[56]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[57]  Roberto D. Graglia,et al.  On the numerical integration of the linear shape functions times the 3-D Green's function or its gradient on a plane triangle , 1993 .

[58]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[59]  A. Nitzan,et al.  Spectroscopic properties of molecules interacting with small dielectric particles , 1981 .

[60]  Abraham Nitzan,et al.  Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces , 1980 .

[61]  Joel I. Gersten,et al.  The effect of surface roughness on surface enhanced Raman scattering , 1980 .

[62]  Joel I. Gersten,et al.  Rayleigh, Mie, and Raman scattering by molecules adsorbed on rough surfaces , 1980 .

[63]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[64]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[65]  Roger F. Harrington,et al.  Field computation by moment methods , 1968 .