Statistical Properties of Sub‐Ion Magnetic Holes in the Dipolarized Magnetotail: Formation, Structure, and Dynamics

Magnetic energy release during magnetic reconnection in the magnetotail leads to fast plasma flows transporting thermal energy toward the inner magnetosphere or deep tail. The interaction of such flows with the ambient plasmas is controlled by forces at the flow's leading edge, manifested as a sharp enhancement of the south‐north component of magnetic field there, which has been called the dipolarization front. In this study, we examine the kinetic plasma structure of equatorial magnetic field perturbations observed behind dipolarization fronts. Using statistical observations of dipolarization fronts in the near‐Earth magnetotail by Time History of Events and Macroscale Interactions during Substorms mission, we find sub‐ion scale (scale is below ion gyroradius) magnetic field depressions (magnetic holes), mostly around the equatorial plane, drifting dawnward. They are populated by hot, transversely anisotropic electrons, likely heated around the front. Combining spacecraft observations, analytical estimates, and particle‐in‐cell simulations, we suggest that these holes result from the ballooning/interchange instability at the dipolarization front. They may represent the nonlinear stage of magnetic field perturbations associated with front instability, which trap hot electrons behind the front. We also discuss the possible role of these holes in scattering and heating electrons and ions in the dipolarized magnetotail.

[1]  P. Pritchett,et al.  Dawnward Drifting Interchange Heads in the Earth's Magnetotail , 2018, Geophysical Research Letters.

[2]  I. Vasko,et al.  3D Magnetic Holes in Collisionless Plasmas , 2018, Plasma Physics Reports.

[3]  C. Norgren,et al.  Formation of dipolarization fronts after current sheet thinning , 2018, Physics of Plasmas.

[4]  P. Hellinger,et al.  Electron mirror instability: particle-in-cell simulations , 2018, Journal of Plasma Physics.

[5]  R. Torbert,et al.  Electron‐Scale Measurements of Dipolarization Front , 2018 .

[6]  C. Russell,et al.  Electron Jet Detected by MMS at Dipolarization Front , 2018 .

[7]  V. Angelopoulos,et al.  On the Acceleration and Anisotropy of Ions Within Magnetotail Dipolarizing Flux Bundles , 2018 .

[8]  Z. Pu,et al.  Plasma Sheet Pressure Variations in the Near‐Earth Magnetotail During Substorm Growth Phase: THEMIS Observations , 2017 .

[9]  V. Angelopoulos,et al.  Electron Cooling and Isotropization during Magnetotail Current Sheet Thinning: Implications for Parallel Electric Fields , 2017 .

[10]  E. Kronberg,et al.  Rapid Pitch Angle Evolution of Suprathermal Electrons Behind Dipolarization Fronts , 2017 .

[11]  V. Angelopoulos,et al.  Kinetics of sub‐ion scale magnetic holes in the near‐Earth plasma sheet , 2017 .

[12]  J. Birn,et al.  Ion velocity distributions in dipolarization events: Distributions in the central plasma sheet , 2017 .

[13]  W. L. Liu,et al.  Explaining the rolling‐pin distribution of suprathermal electrons behind dipolarization fronts , 2017 .

[14]  V. Angelopoulos,et al.  Characteristics of ion distribution functions in dipolarizing flux bundles: Event studies , 2017 .

[15]  J. Bonnell,et al.  Diffusive scattering of electrons by electron holes around injection fronts , 2017 .

[16]  Z. Y. Li,et al.  Observations of kinetic‐size magnetic holes in the magnetosheath , 2017, 1701.01822.

[17]  Z. Yao,et al.  Suprathermal electron acceleration in the near‐Earth flow rebounce region , 2017 .

[18]  C. Russell,et al.  Magnetospheric Multiscale Observations of Electron Vortex Magnetic Hole in the Turbulent Magnetosheath Plasma , 2016, 1612.08787.

[19]  J. Sauvaud,et al.  Origin of low proton‐to‐electron temperature ratio in the Earth's plasma sheet , 2016 .

[20]  V. Angelopoulos,et al.  Statistical properties of substorm auroral onset beads/rays , 2016 .

[21]  V. Angelopoulos,et al.  Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission , 2016 .

[22]  R. Ergun,et al.  Electric fields associated with small‐scale magnetic holes in the plasma sheet: Evidence for electron currents , 2016 .

[23]  C. Russell,et al.  MMS Multipoint electric field observations of small‐scale magnetic holes , 2016 .

[24]  U. Gliese,et al.  Electron dynamics in a subproton‐gyroscale magnetic hole , 2016 .

[25]  Weijie Sun,et al.  An EMHD soliton model for small‐scale magnetic holes in magnetospheric plasmas , 2016 .

[26]  P. Pritchett Three‐dimensional structure and kinetic features of reconnection exhaust jets , 2016 .

[27]  A. Artemyev,et al.  Intermediate regime of charged particle scattering in the field-reversal configuration. , 2015, Chaos.

[28]  V. Angelopoulos,et al.  The role of localized inductive electric fields in electron injections around dipolarizing flux bundles , 2015 .

[29]  P. Pritchett Reconnection flow jets in 3D as a source of structured dipolarization fronts , 2015, Earth, Planets and Space.

[30]  A. Runov,et al.  Average thermodynamic and spectral properties of plasma in and around dipolarizing flux bundles , 2015 .

[31]  H. Karimabadi,et al.  Generation of magnetic holes in fully kinetic simulations of collisionless turbulence , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  P. Sulem,et al.  Variational approach for static mirror structures , 2015 .

[33]  A. Vaivads,et al.  Dawn-dusk scale of dipolarization front in the Earth’s magnetotail: multi-cases study , 2015 .

[34]  S. Markidis,et al.  Evolution of the lower hybrid drift instability at reconnection jet front , 2015 .

[35]  A. Divin,et al.  Lower hybrid drift instability at a dipolarization front , 2015 .

[36]  P. Pritchett Structure of exhaust jets produced by magnetic reconnection localized in the out‐of‐plane direction , 2015 .

[37]  T. Sundberg,et al.  Electron vortex magnetic holes: A nonlinear coherent plasma structure , 2014, 1412.5928.

[38]  B. Mauk,et al.  Magnetic reconnection, buoyancy, and flapping motions in magnetotail explosions , 2014 .

[39]  Wolfgang Baumjohann,et al.  Electron pitch angle/energy distribution in the magnetotail , 2014 .

[40]  Weijie Sun,et al.  EMHD theory and observations of electron solitary waves in magnetotail plasmas , 2014 .

[41]  P. Pritchett,et al.  The kinetic ballooning/interchange instability as a source of dipolarization fronts and auroral streamers , 2014 .

[42]  M. Ashour‐Abdalla,et al.  Observation of large‐amplitude magnetosonic waves at dipolarization fronts , 2014 .

[43]  A. Vaivads,et al.  Whistler mode waves at magnetotail dipolarization fronts , 2014 .

[44]  V. Angelopoulos,et al.  Statistical characteristics of particle injections throughout the equatorial magnetotail , 2014 .

[45]  V. Angelopoulos,et al.  On the relationship of electrostatic cyclotron harmonic emissions with electron injections and dipolarization fronts , 2014 .

[46]  J. Goldstein,et al.  An empirical model for the location and occurrence rate of near‐Earth magnetotail reconnection , 2013 .

[47]  A. Vaivads,et al.  Energetic electron acceleration by unsteady magnetic reconnection , 2013, Nature Physics.

[48]  V. Angelopoulos,et al.  On the current sheets surrounding dipolarizing flux bundles in the magnetotail: The case for wedgelets , 2013 .

[49]  J. Birn,et al.  Particle acceleration in dipolarization events , 2013 .

[50]  T. Nagai,et al.  Magnetic Reconnection in the Near‐Earth Magnetotail , 2013, Magnetospheres in the Solar System.

[51]  P. Pritchett,et al.  Structure and consequences of the kinetic ballooning/interchange instability in the magnetotail , 2013 .

[52]  A. Vaivads,et al.  Pitch angle distribution of suprathermal electrons behind dipolarization fronts: A statistical overview , 2012 .

[53]  V. Angelopoulos,et al.  The effects of transient, localized electric fields on equatorial electron acceleration and transport toward the inner magnetosphere , 2012 .

[54]  V. Angelopoulos,et al.  Spatial distributions of the ion to electron temperature ratio in the magnetosheath and plasma sheet , 2012 .

[55]  M. Balikhin,et al.  Magnetic holes in the vicinity of dipolarization fronts: Mirror or tearing structures? , 2012 .

[56]  R. Nakamura,et al.  Adiabatic electron heating in the magnetotail current sheet: Cluster observations and analytical models , 2012 .

[57]  A. Vaivads,et al.  Occurrence rate of earthward‐propagating dipolarization fronts , 2012 .

[58]  V. Angelopoulos,et al.  Diversion of plasma due to high pressure in the inner magnetosphere during steady magnetospheric convection , 2012 .

[59]  A. Vaivads,et al.  Electric structure of dipolarization front at sub‐proton scale , 2012 .

[60]  M. Dunlop,et al.  Cluster and TC-1 observation of magnetic holes in the plasma sheet , 2012 .

[61]  Wolfgang Baumjohann,et al.  Proton/electron temperature ratio in the magnetotail , 2011 .

[62]  A. Vaivads,et al.  Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts , 2011 .

[63]  R. Nakamura,et al.  Hot electrons as tracers of large‐scale structure of magnetotail current sheets , 2011 .

[64]  G. Lapenta,et al.  Self‐consistent seeding of the interchange instability in dipolarization fronts , 2011, 1105.0485.

[65]  V. Angelopoulos,et al.  A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet , 2011 .

[66]  C. Owen,et al.  Plasma jet braking: energy dissipation and nonadiabatic electrons. , 2011, Physical review letters.

[67]  C. Owen,et al.  Average magnetotail electron and proton pitch angle distributions from Cluster PEACE and CIS observations , 2011 .

[68]  O. D. Constantinescu,et al.  Case studies of mirror‐mode structures observed by THEMIS in the near‐Earth tail during substorms , 2011 .

[69]  V. Angelopoulos,et al.  Kinetic structure of the sharp injection/dipolarization front in the flow‐braking region , 2009 .

[70]  V. Angelopoulos,et al.  THEMIS observations of an earthward‐propagating dipolarization front , 2009 .

[71]  R. Abiad,et al.  The THEMIS ESA Plasma Instrument and In-flight Calibration , 2008 .

[72]  N. Omidi,et al.  Mirror mode waves: Messengers from the coronal heating region , 2008 .

[73]  E. Kuznetsov,et al.  Nonlinear mirror mode dynamics: Simulations and modeling , 2008 .

[74]  U. Auster,et al.  First Results from the THEMIS Mission , 2008 .

[75]  Werner Magnes,et al.  The THEMIS Fluxgate Magnetometer , 2008 .

[76]  J. Souček,et al.  Properties of magnetosheath mirror modes observed by Cluster and their response to changes in plasma parameters , 2008 .

[77]  R. Sagdeev,et al.  Nonlinear mirror waves in non-Maxwellian space plasmas: Theory and numerical simulations , 2008 .

[78]  P. Sulem,et al.  Dynamical model for nonlinear mirror modes near threshold. , 2007, Physical review letters.

[79]  P. Pritchett,et al.  A kinetic ballooning/interchange instability in the magnetotail , 2005 .

[80]  R. Sagdeev,et al.  Halo and mirror instabilities in the presence of finite Larmor radius effects , 2005 .

[81]  J. Samson,et al.  Midnight radial profiles of the quiet and growth‐phase plasma sheet: The Geotail observations , 2004 .

[82]  J. Birn,et al.  MHD stability of magnetotail equilibria including a background pressure , 2004 .

[83]  Rumi Nakamura,et al.  Spatial scale of high‐speed flows in the plasma sheet observed by Cluster , 2004 .

[84]  J. Birn,et al.  Electron acceleration in the dynamic magnetotail: Test particle orbits in three-dimensional magnetohydrodynamic simulation fields , 2004 .

[85]  T. Mukai,et al.  Temporal structure of the fast convective flow in the plasma sheet: Comparison between observations and two-fluid simulations , 2004 .

[86]  K. Glassmeier,et al.  Motion of the dipolarization front during a flow burst event observed by Cluster , 2002 .

[87]  O. D. Constantinescu Self-consistent model of mirror structures , 2002 .

[88]  M. Kivelson,et al.  Mirror instability II: The mechanism of nonlinear saturation , 1996 .

[89]  Daniel N. Baker,et al.  Neutral line model of substorms: Past results and present view , 1996 .

[90]  C. Russell,et al.  Characteristics of ion flow in the quiet state of the inner plasma sheet , 1993 .

[91]  R. Puetter,et al.  A two-dimensional, time-dependent, near-earth magnetotail , 1991 .

[92]  G. Paschmann,et al.  Average plasma properties in the central plasma sheet , 1989 .

[93]  K. Murawski,et al.  Solitary waves in plasmas and in the atmosphere , 1989 .

[94]  M. Temerin,et al.  Ion heating by waves with frequencies below the ion gyrofrequency , 1986 .

[95]  T. Birmingham Pitch angle diffusion in the Jovian magnetodisc , 1984 .

[96]  L. Burlaga,et al.  Interplanetary magnetic holes: Theory , 1978 .