A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults

We present a publicly available dataset of 227 healthy participants comprising a young (N=153, 25.1±3.1 years, range 20–35 years, 45 female) and an elderly group (N=74, 67.6±4.7 years, range 59–77 years, 37 female) acquired cross-sectionally in Leipzig, Germany, between 2013 and 2015 to study mind-body-emotion interactions. During a two-day assessment, participants completed MRI at 3 Tesla (resting-state fMRI, quantitative T1 (MP2RAGE), T2-weighted, FLAIR, SWI/QSM, DWI) and a 62-channel EEG experiment at rest. During task-free resting-state fMRI, cardiovascular measures (blood pressure, heart rate, pulse, respiration) were continuously acquired. Anthropometrics, blood samples, and urine drug tests were obtained. Psychiatric symptoms were identified with Standardized Clinical Interview for DSM IV (SCID-I), Hamilton Depression Scale, and Borderline Symptoms List. Psychological assessment comprised 6 cognitive tests as well as 21 questionnaires related to emotional behavior, personality traits and tendencies, eating behavior, and addictive behavior. We provide information on study design, methods, and details of the data. This dataset is part of the larger MPI Leipzig Mind-Brain-Body database.Design Type(s)parallel group design • data collection and processing objectiveMeasurement Type(s)brain measurement • behaviorTechnology Type(s)magnetic resonance imaging • questionnaireFactor Type(s)age • biological sex • handednessSample Characteristic(s)Homo sapiens • brainMachine-accessible metadata file describing the reported data (ISA-Tab format)

Julia M. Huntenburg | Mark E. Lauckner | Christiane S. Rohr | Krzysztof J. Gorgolewski | Natacha Mendes | A. Anwander | D. Margulies | A. Villringer | A. Babayan | M. Erbey | D. Kumral | J. Reinelt | A. Reiter | Josefin Röbbig | H. L. Schaare | M. Uhlig | P. Bazin | Annette Horstmann | L. Lampe | V. Nikulin | H. Okon-Singer | S. Preusser | A. Pampel | C. Rohr | J. Sacher | A. Thöne-Otto | S. Trapp | T. Nierhaus | D. Altmann | K. Arélin | M. Blöchl | Edith Bongartz | P. Breig | E. Cesnaite | Sufang Chen | Roberto Cozatl | Saskia Czerwonatis | Gabrielė Dambrauskaitė | Maria Dreyer | J. Enders | M. Engelhardt | M. Fischer | Norman Forschack | Johannes Golchert | L. Golz | C. Guran | S. Hedrich | N. Hentschel | Daria I Hoffmann | Rebecca Jost | A. Kosatschek | Stella Kunzendorf | Hannah Lammers | K. Mahjoory | A. S. Kanaan | R. Menger | E. Morino | Karina Näthe | Jennifer Neubauer | H. Noyan | Sabine Oligschläger | Patricia Panczyszyn-Trzewik | Dorothee Pöhlchen | Nadine Putzke | S. Roski | Marie-Catherine Schaller | Anja Schieferbein | B. Schlaak | R. Schmidt | H. M. Schmidt | A. Schrimpf | Sylvia Stasch | M. Voss | A. Wiedemann | Michael Gaebler | Norman Forschack | D. Poehlchen | H. Lammers | Anne Wiedemann | Daria I. Hoffmann | Ramona Menger | Enzo Morino | Christiane S. Rohr | Julia Sacher | A. Villringer | A. Anwander | Andrea M. F. Reiter | Marie Uhlig | Annette Horstmann | Vadim V. Nikulin | André Pampel | Sabrina Trapp | Denise Altmann | Edith Bongartz | Patric Breig | Sufang Chen | Saskia Czerwonatis | Gabriele Dambrauskaite | Jessica Enders | Melina Engelhardt | Marie Michele Fischer | C. A. Guran | Susanna Hedrich | Nicole Hentschel | Daria I. Hoffmann | Hannah Lammers | Ramona Menger | Enzo Morino | Jennifer Neubauer | Handan Noyan | Patricia Panczyszyn-Trzewik | Dorothee Poehlchen | Nadine Putzke | Sabrina Roski | Anja Schieferbein | Robert Schmidt | Hanna Maria Schmidt | Sylvia Stasch | Maria Voss | Annett Wiedemann

[1]  W. James II.—WHAT IS AN EMOTION ? , 1884 .

[2]  M. Hamilton A RATING SCALE FOR DEPRESSION , 1960, Journal of neurology, neurosurgery, and psychiatry.

[3]  J. Singer,et al.  Cognitive, social, and physiological determinants of emotional state. , 1962 .

[4]  C. Spielberger,et al.  Manual for the State-Trait Anxiety Inventory , 1970 .

[5]  A. Stunkard,et al.  The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. , 1985, Journal of psychosomatic research.

[6]  C. N. Chiang,et al.  Urine testing for drugs of abuse. , 1986, NIDA research monograph.

[7]  C. N. Chiang,et al.  Urine Testing for Drugs of Abuse. NIDA Research Monograph Series 73. , 1986 .

[8]  A. House Depression after stroke. , 1987, British medical journal.

[9]  G. Zimet,et al.  The Multidimensional Scale of Perceived Social Support , 1988 .

[10]  J. Michael Fitzpatrick,et al.  A technique for accurate magnetic resonance imaging in the presence of field inhomogeneities , 1992, IEEE Trans. Medical Imaging.

[11]  Linda C. Sobell,et al.  Timeline Follow-Back A Technique for Assessing Self-Reported Alcohol Consumption , 1992 .

[12]  P. Costa,et al.  Revised NEO Personality Inventory (NEO-PI-R) and NEO-Five-Factor Inventory (NEO-FFI) , 1992 .

[13]  G. Chrousos,et al.  The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. , 1992, JAMA.

[14]  S. Levenstein,et al.  Development of the Perceived Stress Questionnaire: a new tool for psychosomatic research. , 1993, Journal of psychosomatic research.

[15]  O. Aasland,et al.  Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO Collaborative Project on Early Detection of Persons with Harmful Alcohol Consumption--II. , 1993, Addiction.

[16]  C. Carver,et al.  Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS Scales , 1994 .

[17]  Michael W. Bridges,et al.  Distinguishing optimism from neuroticism (and trait anxiety, self-mastery, and self-esteem): a reevaluation of the Life Orientation Test. , 1994, Journal of personality and social psychology.

[18]  R. Bagby,et al.  The twenty-item Toronto Alexithymia Scale--I. Item selection and cross-validation of the factor structure. , 1994, Journal of psychosomatic research.

[19]  Tzyy-Ping Jung,et al.  Independent Component Analysis of Electroencephalographic Data , 1995, NIPS.

[20]  P. Jezzard,et al.  Correction for geometric distortion in echo planar images from B0 field variations , 1995, Magnetic resonance in medicine.

[21]  Joseph E LeDoux The emotional brain , 1996 .

[22]  Joseph E LeDoux The emotional brain , 1996 .

[23]  C. Carver You want to measure coping but your protocol’ too long: Consider the brief cope , 1997, International journal of behavioral medicine.

[24]  H. Wittchen,et al.  SKID I. Strukturiertes Klinisches Interview für DSM-IV. Achse I: Psychische Störungen. Interviewheft und Beurteilungsheft. Eine deutschsprachige, erweiterte Bearb. d. amerikanischen Originalversion des SKID I , 1997 .

[25]  P. Reber,et al.  Correction of off resonance‐related distortion in echo‐planar imaging using EPI‐based field maps , 1998, Magnetic resonance in medicine.

[26]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[27]  Aike Hessel,et al.  Fragebogen zur Sozialen Unterstützung (F-SozU) , 1999 .

[28]  C. Spielberger,et al.  Measuring anxiety and anger with the State-Trait Anxiety Inventory (STAI) and the State-Trait Anger Expression Inventory (STAXI). , 1999 .

[29]  Peter Schulz,et al.  Trierer Inventar zur Erfassung von chronischem Streß (TICS): Skalenkonstruktion, teststatistische Überprüfung und Validierung der Skala Arbeitsüberlastung , 1999 .

[30]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[31]  G H Glover,et al.  Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR , 2000, Magnetic resonance in medicine.

[32]  G. C. Bates Affect regulation. , 2000, The International journal of psycho-analysis.

[33]  M. Mussolino,et al.  Symptoms of Depression as a Prospective Risk Factor for Stroke , 2000, Psychosomatic medicine.

[34]  I. Kawachi,et al.  Going to the heart of the matter: do negative emotions cause coronary heart disease? , 2000, Journal of psychosomatic research.

[35]  S. Whiteside,et al.  The Five Factor Model and impulsivity: using a structural model of personality to understand impulsivity , 2001 .

[36]  Stefan Debener,et al.  Eine deutschsprachige Version des BIS/BAS-Fragebogens von Carver und White , 2001 .

[37]  Robert Oostenveld,et al.  The five percent electrode system for high-resolution EEG and ERP measurements , 2001, Clinical Neurophysiology.

[38]  H. Fliege,et al.  Validierung des “Perceived Stress Questionnaire“ (PSQ) an einer deutschen Stichprobe , 2001 .

[39]  P. Spinhoven,et al.  Negative life events, cognitive emotion regulation and emotional problems , 2001 .

[40]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[41]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[42]  L. Carstensen,et al.  Time counts: future time perspective, goals, and social relationships. , 2002, Psychology and aging.

[43]  M. Cabanac What is emotion? , 2002, Behavioural Processes.

[44]  O. John,et al.  Individual differences in two emotion regulation processes: implications for affect, relationships, and well-being. , 2003, Journal of personality and social psychology.

[45]  Stefan Skare,et al.  How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging , 2003, NeuroImage.

[46]  D. Streiner Starting at the Beginning: An Introduction to Coefficient Alpha and Internal Consistency , 2003, Journal of personality assessment.

[47]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[48]  D. Ford,et al.  Depressive symptoms and the risk of type 2 diabetes: the Atherosclerosis Risk in Communities study. , 2004, Diabetes care.

[49]  P. Becker,et al.  Trierer Inventar zum Chronischen Stress (TICS) [Trier Inventory for Chronic Stress (TICS)] , 2004 .

[50]  R. Schwarzer,et al.  Coping as a mediator between personality and stress outcomes: a longitudinal study with cataract surgery patients , 2005 .

[51]  Adrian Furnham,et al.  The Role of Trait Emotional Intelligence in a Gender‐Specific Model of Organizational Variables , 2006 .

[52]  Thomas T. Liu,et al.  A component based noise correction method (CompCor) for BOLD and perfusion based fMRI , 2007, NeuroImage.

[53]  A. Neubauer,et al.  Testing and validating the trait emotional intelligence questionnaire (TEIQue) in a German-speaking sample , 2008 .

[54]  M. Linden,et al.  A German Adaptation of the UPPS Impulsive Behavior Scale: Psychometric Properties and Factor Structure , 2008 .

[55]  Jürgen Hoyer,et al.  Die deutsche Version des Life-Orientation-Tests (LOT-R) zum dispositionellen Optimismus und Pessimismus , 2008 .

[56]  Mack T Ruffin,et al.  Biomarkers of Psychological Stress in Health Disparities Research. , 2008, The open biomarkers journal.

[57]  K. Willmes,et al.  CVLT California Verbal Learning Test. German adaptation. Manual , 2008 .

[58]  A. Chapman,et al.  The Short Version of the Borderline Symptom List (BSL-23): Development and Initial Data on Psychometric Properties , 2008, Psychopathology.

[59]  P. Borkenau,et al.  NEO-FFI : NEO-Fünf-Faktoren-Inventar nach Costa und McCrae, Manual , 2008 .

[60]  K. Brownell,et al.  Preliminary validation of the Yale Food Addiction Scale , 2009, Appetite.

[61]  B. Abler,et al.  Emotion Regulation Questionnaire – Eine deutschsprachige Fassung des ERQ von Gross und John , 2009 .

[62]  M. McClintock,et al.  Peripheral tumors induce depressive-like behaviors and cytokine production and alter hypothalamic-pituitary-adrenal axis regulation , 2009, Proceedings of the National Academy of Sciences.

[63]  U. Kanning,et al.  NEO-Fünf-Faktoren-Inventar nach Costa und McCrae (NEO-FFI) , 2009 .

[64]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.

[65]  Z. Wu,et al.  Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications, Part 2 , 2008, American Journal of Neuroradiology.

[66]  Ariel Rokem,et al.  Nitime: time-series analysis for neuroimaging data , 2009 .

[67]  E. Haacke,et al.  Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications, Part 1 , 2008, American Journal of Neuroradiology.

[68]  Steen Moeller,et al.  Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI , 2010, Magnetic resonance in medicine.

[69]  Tobias Kober,et al.  MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field , 2010, NeuroImage.

[70]  Stephen M. Smith,et al.  Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging , 2010, PloS one.

[71]  W. Hiller,et al.  Der Cognitive Emotion Regulation Questionnaire (CERQ) , 2011 .

[72]  Arno Klein,et al.  A reproducible evaluation of ANTs similarity metric performance in brain image registration , 2011, NeuroImage.

[73]  Ana L. N. Fred,et al.  Unveiling the Biometric Potential of Finger-Based ECG Signals , 2011, Comput. Intell. Neurosci..

[74]  Richard M. Leahy,et al.  Brainstorm: A User-Friendly Application for MEG/EEG Analysis , 2011, Comput. Intell. Neurosci..

[75]  C. M. Adkins,et al.  Pulse Decomposition Analysis of the digital arterial pulse during hemorrhage simulation , 2011, Nonlinear biomedical physics.

[76]  Mark W. Woolrich,et al.  FSL , 2012, NeuroImage.

[77]  J. Polimeni,et al.  Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty , 2012, Magnetic resonance in medicine.

[78]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[79]  W. Linden,et al.  Anxiety and depression after cancer diagnosis: prevalence rates by cancer type, gender, and age. , 2012, Journal of affective disorders.

[80]  J. Thayer,et al.  eview meta-analysis of heart rate variability and neuroimaging studies : Implications or heart rate variability as a marker of stress and health , 2012 .

[81]  C. Vögele,et al.  Deutsche Übersetzung und Validierung der Yale Food Addiction Scale , 2012 .

[82]  J. Stevens,et al.  The Atherosclerosis Risk in Communities Study , 2013 .

[83]  Steen Moeller,et al.  Evaluation of slice accelerations using multiband echo planar imaging at 3T , 2013, NeuroImage.

[84]  Rolf Gruetter,et al.  New Developments and Applications of the MP2RAGE Sequence - Focusing the Contrast and High Spatial Resolution R1 Mapping , 2013, PloS one.

[85]  Stacey B. Scott,et al.  Age differences in emotional responses to daily stress: the role of timing, severity, and global perceived stress. , 2013, Psychology and aging.

[86]  L. Kreuzpointner,et al.  Leistungsprüfsystem 2. LPS-2. Manual , 2013 .

[87]  J. Hietanen,et al.  Bodily maps of emotions , 2013, Proceedings of the National Academy of Sciences.

[88]  C. R. Cloninger,et al.  Responsibility and cooperativeness are constrained, not determined , 2014, Front. Psychol..

[89]  Daniel S. Margulies,et al.  A Correspondence between Individual Differences in the Brain's Intrinsic Functional Architecture and the Content and Form of Self-Generated Thoughts , 2014, PloS one.

[90]  Ashley N. Gearhardt,et al.  ADDICTIVE DISORDERS IN DSM-5 ( JE GRANT , SECTION EDITOR ) Five years of the Yale Food Addiction Scale : Taking stock and moving forward , 2014 .

[91]  Juliane Dinse,et al.  A computational framework for ultra-high resolution cortical segmentation at 7Tesla , 2014, NeuroImage.

[92]  U. Kunzmann,et al.  Emotional aging: a discrete emotions perspective , 2014, Front. Psychol..

[93]  U. Stangier,et al.  Zeitschrift für Klinische Psychologie und Psychotherapie , 2014 .

[94]  Michael Elad,et al.  ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA , 2014, Magnetic resonance in medicine.

[95]  P. Falkai Diagnostisches und Statistisches Manual Psychischer Störungen - DSM-5 ® , 2015 .

[96]  L. Pessoa Précis on The Cognitive-Emotional Brain. , 2014, The Behavioral and brain sciences.

[97]  Wei Li,et al.  Susceptibility‐weighted imaging and quantitative susceptibility mapping in the brain , 2015, Journal of magnetic resonance imaging : JMRI.

[98]  A. Stone,et al.  Subjective wellbeing, health, and ageing , 2015, The Lancet.

[99]  C. Büchel,et al.  The neural bases of emotion regulation , 2015, Nature Reviews Neuroscience.

[100]  M. Carrillo,et al.  Summary of the evidence on modifiable risk factors for cognitive decline and dementia: A population-based perspective , 2015, Alzheimer's & Dementia.

[101]  K. Czene,et al.  Clinical Diagnosis of Mental Disorders Immediately Before and After Cancer Diagnosis: A Nationwide Matched Cohort Study in Sweden. , 2016, JAMA oncology.

[102]  Christine L. Tardif,et al.  A subject-specific framework for in vivo myeloarchitectonic analysis using high resolution quantitative MRI , 2016, NeuroImage.

[103]  Antoine Lutti,et al.  Neurobiological origin of spurious brain morphological changes: A quantitative MRI study , 2016, Human brain mapping.

[104]  H. Critchley,et al.  Threat and the Body: How the Heart Supports Fear Processing , 2016, Trends in Cognitive Sciences.

[105]  Kawin Setsompop,et al.  Single‐step quantitative susceptibility mapping with variational penalties , 2017, NMR in biomedicine.

[106]  Satrajit S. Ghosh,et al.  BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods , 2016, bioRxiv.

[107]  Krzysztof J. Gorgolewski,et al.  MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites , 2016, bioRxiv.

[108]  Ferdinand Schweser,et al.  Overview of quantitative susceptibility mapping , 2017, NMR in biomedicine.

[109]  Ninon Burgos,et al.  New advances in the Clinica software platform for clinical neuroimaging studies , 2019 .

[110]  Julia M. Huntenburg,et al.  A functional connectome phenotyping dataset including cognitive state and personality measures , 2017, bioRxiv.

[111]  Vadim V. Nikulin,et al.  Spatial neuronal synchronization and the waveform of oscillations: implications for EEG and MEG , 2019, PLoS Comput. Biol..