On higher spin realizations of K(E10)
暂无分享,去创建一个
[1] D. Waldram,et al. Supergravity as generalised geometry II: Ed(d) × ℝ+ and M theory , 2014 .
[2] T. Damour,et al. Quantum supersymmetric cosmology and its hidden Kac--Moody structure , 2013, 1304.6381.
[3] Seung Ki Kwak,et al. N = 1 Supersymmetric Double Field Theory , 2012 .
[4] P. Fleig,et al. Eisenstein series for infinite-dimensional U-duality groups , 2012, 1204.3043.
[5] Seung Ki Kwak,et al. $ \mathcal{N} = {1} $ supersymmetric double field theory , 2011, 1111.7293.
[6] P. Levy,et al. Generalized spin representations. Part 1: Reductive finite-dimensional quotients of maximal compact subalgebras of Kac-Moody algebras , 2011 .
[7] Kanghoon Lee,et al. Incorporation of fermions into double field theory , 2011, 1109.2035.
[8] T. Damour,et al. Quantum Einstein-Dirac Bianchi Universes , 2011, 1103.2927.
[9] S. Miller,et al. Eisenstein series for higher-rank groups and string theory amplitudes , 2010, 1004.0163.
[10] J. Russo,et al. Automorphic properties of low energy string amplitudes in various dimensions , 2010, 1001.2535.
[11] H. Nicolai,et al. Cosmological quantum billiards , 2009, 0912.0854.
[12] H. Nicolai,et al. Supersymmetric quantum cosmological billiards , 2009, 0907.3048.
[13] T. Damour,et al. Fermionic Kac-Moody billiards and supergravity , 2009, 0906.3116.
[14] M. Henneaux,et al. On the E10/Massive Type IIA Supergravity Correspondence , 2008, 0811.4358.
[15] V. Sidoravicius,et al. New Trends in Mathematical Physics , 2009 .
[16] A. Kleinschmidt. Unifying R-symmetry in M-theory , 2007, hep-th/0703262.
[17] Axel Kleinschmidt,et al. K(E9) from K(E10) , 2006, hep-th/0611314.
[18] T. Damour,et al. K(E10), supergravity and fermions , 2006, hep-th/0606105.
[19] H. Nicolai,et al. IIA and IIB spinors from K(E10) , 2006, hep-th/0603205.
[20] M. Henneaux,et al. Extended E8 invariance of 11-dimensional supergravity , 2005, hep-th/0512292.
[21] T. Damour,et al. Hidden symmetries and the fermionic sector of eleven-dimensional supergravity , 2005, hep-th/0512163.
[22] T. Damour,et al. Supergravity and Fermions , 2006 .
[23] H. Nicolai,et al. Gradient representations and affine structures in AEn , 2005, hep-th/0506238.
[24] M. Henneaux,et al. Hidden symmetries and Dirac fermions , 2005, hep-th/0506009.
[25] H. Nicolai,et al. E10 and SO(9, 9) invariant supergravity , 2004, hep-th/0407101.
[26] H. Nicolai,et al. On $K(E_9)$ , 2004 .
[27] P. West. E11, SL(32) and central charges , 2003, hep-th/0307098.
[28] T. Damour,et al. Cosmological Billiards , 2002, hep-th/0212256.
[29] T. Damour,et al. TOPICAL REVIEW: Cosmological billiards , 2002 .
[30] T. Damour,et al. E10 and a small tension expansion of m theory. , 2002, Physical review letters.
[31] Ulf Gran. GAMMA: A Mathematica package for performing gamma-matrix algebra and Fierz transformations in arbitrary dimensions , 2001, hep-th/0105086.
[32] C. Bachas,et al. Nahm's equations, $N=1^{*}$ domain walls, and D-strings in $AdS_{5} \times S_{5}$ , 2000 .
[33] Damour,et al. Chaos in superstring cosmology , 2000, Physical review letters.
[34] B. Pioline,et al. U duality and M theory , 1998, hep-th/9809039.
[35] B. Pioline. A note on non-perturbative R4 couplings , 1998 .
[36] M. Gutperle,et al. Effects of D instantons , 1997, hep-th/9701093.
[37] P. Townsend,et al. Unity of superstring dualities , 1994, hep-th/9410167.
[38] S. Berman. On generators and relations for certain involutory subalgebras of kac-moody lie algebras ∗ , 1989 .
[39] H. Nicolai. The integrability of N=16 supergravity , 1987 .
[40] P. Goddard,et al. Kac-Moody and Virasoro Algebras in Relation to Quantum Physics , 1986 .
[41] P. Sally,et al. Applications of Group Theory in Physics and Mathematical Physics , 1985 .
[42] I. Frenkel,et al. A hyperbolic Kac-Moody algebra and the theory of Siegel modular forms of genus 2 , 1983 .
[43] B. Julia. KAC-MOODY SYMMETRY OF GRAVITATION AND SUPERGRAVITY THEORIES , 1982 .
[44] E. Cremmer,et al. The N = 8 supergravity theory. I. The lagrangian , 1978 .
[45] I. Stewart,et al. Infinite-dimensional Lie algebras , 1974 .