Fundamentals of plasma simulation

With the increasing size and speed of modern supercomputers, the incredibly complex nonlinear properties of plasmas in the laboratory and in space are being successfully explored in increasing depth. Of particular importance have been numerical simulation techniques involving finite size particles on a discrete mesh. After discussing the importance of this means of understanding a variety of nonlinear plasma phenomena, we describe the basic elements of particle-in-cell simulation and their limitations and advantages. The differencing techniques, stability and accuracy issues, data management and optimization issues are discussed by a simple example of a particle-in-cell code. Recent advances in simulation methods allowing large space and time scales to be treated with minimal sacrifice in physics are reviewed. Various examples of nonlinear processes successfully studied by plasma simulation are given.

[1]  John M. Dawson,et al.  Application of electromagnetic particle simulation to the generation of electromagnetic radiation , 1974 .

[2]  D. Forslund,et al.  Theory of hot-electron spectra at high laser intensity , 1977 .

[3]  Jacques Denavit,et al.  Numerical simulation of plasmas with periodic smoothing in phase space , 1972 .

[4]  C. W. Nielson,et al.  Numerical Simulation of Warm Two‐Beam Plasma , 1969 .

[5]  H. Lewis,et al.  Energy-conserving numerical approximations for Vlasov plasmas , 1970 .

[6]  Hideo Okuda,et al.  Nonphysical noises and instabilities in plasma simulation due to a spatial grid , 1972 .

[7]  O. Buneman,et al.  Time-Reversible Difference Procedures , 1967 .

[8]  J. Denavit,et al.  Time-filtering particle simulations with ωpe Δt ⪢ 1 , 1981 .

[9]  Brendan B. Godfrey,et al.  Numerical Cherenkov instabilities in electromagnetic particle codes , 1974 .

[10]  A. Bruce Langdon,et al.  THEORY OF PLASMA SIMULATION USING FINITE-SIZE PARTICLES. , 1970 .

[11]  T. Katsouleas,et al.  Ultrahigh gradient particle acceleration by intense laser-driven plasma density waves , 1984, Nature.

[12]  R. Morse,et al.  NUMERICAL SIMULATION OF THE WEIBEL INSTABILITY IN ONE AND TWO DIMENSIONS. , 1971 .

[13]  A. Bruce Langdon,et al.  “Energy-conserving” plasma simulation algorithms , 1973 .

[14]  E. Lindman,et al.  DISPERSION RELATION FOR COMPUTER-SIMULATED PLASMAS. , 1970 .

[15]  J. Brackbill,et al.  Nonlinear evolution of the lower‐hybrid drift instability , 1984 .

[16]  Brendan B. Godfrey,et al.  Canonical momenta and numerical instabilities in particle codes , 1975 .

[17]  Jeremiah Brackbill,et al.  Collisionless dissipation processes in quasi‐parallel shocks , 1983 .

[18]  Bruce I. Cohen,et al.  Direct implicit large time-step particle simulation of plasmas , 1983 .

[19]  Jeremiah Brackbill,et al.  Magnetic-field--induced surface transport on laser-irradiated foils , 1982 .

[20]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[21]  R. J. Mason,et al.  Implicit moment particle simulation of plasmas , 1981 .

[22]  Jeremiah Brackbill,et al.  An implicit method for electromagnetic plasma simulation in two dimensions , 1982 .

[23]  P. H. Sakanaka,et al.  Formation of Ion‐Acoustic Collisionless Shocks , 1971 .

[24]  Jeremiah Brackbill,et al.  Collisionless dissipation in quasi‐perpendicular shocks , 1984 .

[25]  A. Bruce Langdon,et al.  EFFECTS OF THE SPATIAL GRID IN SIMULATION PLASMAS. , 1970 .