The Capacity of Single-Server Weakly-Private Information Retrieval

A private information retrieval (PIR) protocol guarantees that a user can privately retrieve files stored in a database without revealing any information about the identity of the requested file. Existing information-theoretic PIR protocols ensure perfect privacy, i.e., zero information leakage to the servers storing the database, but at the cost of high download. In this work, we present weakly-private information retrieval (WPIR) schemes that trade off perfect privacy to improve the download cost when the database is stored on a single server. We study the tradeoff between the download cost and information leakage in terms of mutual information (MI) and maximal leakage (MaxL) privacy metrics. By relating the WPIR problem to rate-distortion theory, the download-leakage function, which is defined as the minimum required download cost of all single-server WPIR schemes for a given level of information leakage and a fixed file size, is introduced. By characterizing the download-leakage function for the MI and MaxL metrics, the capacity of single-server WPIR is fully described.

[1]  Krishna R. Narayanan,et al.  Weakly Secure Network Coding , 2005 .

[2]  Swanand Kadhe,et al.  Private Information Retrieval With Side Information , 2017, IEEE Transactions on Information Theory.

[3]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[4]  Itzhak Tamo,et al.  Private Information Retrieval is Graph Based Replication Systems , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[5]  Sofya Raskhodnikova,et al.  What Can We Learn Privately? , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[6]  Martin J. Wainwright,et al.  Local privacy and statistical minimax rates , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[7]  Loukas Lazos,et al.  Latent-variable Private Information Retrieval , 2020, 2020 IEEE International Symposium on Information Theory (ISIT).

[8]  Cynthia Dwork,et al.  Differential Privacy , 2006, ICALP.

[9]  Geoffrey Smith,et al.  On the Foundations of Quantitative Information Flow , 2009, FoSSaCS.

[10]  Hua Sun,et al.  The Capacity of Symmetric Private Information Retrieval , 2016, 2016 IEEE Globecom Workshops (GC Wkshps).

[11]  Eyal Kushilevitz,et al.  Private information retrieval , 1998, JACM.

[12]  Eitan Yaakobi,et al.  Bounds on the Length of Functional PIR and Batch Codes , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[13]  Hirosuke Yamamoto,et al.  Private information retrieval for coded storage , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[14]  Eitan Yaakobi,et al.  Multi-Server Weakly-Private Information Retrieval , 2022, IEEE Transactions on Information Theory.

[15]  Sennur Ulukus,et al.  Semantic Private Information Retrieval , 2020, IEEE Transactions on Information Theory.

[16]  Salim El Rouayheb,et al.  One-Shot PIR: Refinement and Lifting , 2018, IEEE Transactions on Information Theory.

[17]  Stefan M. Moser,et al.  Advanced Topics in Information Theory: Lecture Notes , 2018 .

[18]  Camilla Hollanti,et al.  Private Information Retrieval from Coded Databases with Colluding Servers , 2016, SIAM J. Appl. Algebra Geom..

[19]  Fatemeh Kazemi,et al.  The Role of Coded Side Information in Single-Server Private Information Retrieval , 2019, IEEE Transactions on Information Theory.

[20]  Eitan Yaakobi,et al.  On the Access Complexity of PIR Schemes , 2018, 2019 IEEE International Symposium on Information Theory (ISIT).

[21]  Loukas Lazos,et al.  On the Capacity of Leaky Private Information Retrieval , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[22]  Thomas M. Cover,et al.  Elements of information theory (2. ed.) , 2006 .

[23]  Hua Sun,et al.  The Capacity of Private Information Retrieval , 2017, IEEE Transactions on Information Theory.

[24]  Ruida Zhou,et al.  On the Information Leakage in Private Information Retrieval Systems , 2020, IEEE Transactions on Information Forensics and Security.

[25]  Loukas Lazos,et al.  Asymmetric Leaky Private Information Retrieval , 2020, IEEE Transactions on Information Theory.

[26]  George Danezis,et al.  Lower-Cost ∈-Private Information Retrieval , 2016, Proc. Priv. Enhancing Technol..

[27]  Johann-Christoph Freytag,et al.  Repudiative information retrieval , 2002, WPES '02.

[28]  Wonjae Shin,et al.  Private Information Retrieval for Secure Distributed Storage Systems , 2018, IEEE Transactions on Information Forensics and Security.

[29]  Hua Sun,et al.  Cross Subspace Alignment and the Asymptotic Capacity of $X$ -Secure $T$ -Private Information Retrieval , 2018, IEEE Transactions on Information Theory.

[30]  Chao Tian,et al.  Weakly Private Information Retrieval Under the Maximal Leakage Metric , 2020, 2020 IEEE International Symposium on Information Theory (ISIT).

[31]  Alexandre Graell i Amat,et al.  Asymmetry Helps: Improved Private Information Retrieval Protocols for Distributed Storage , 2018, 2018 IEEE Information Theory Workshop (ITW).

[32]  David A. Basin,et al.  An information-theoretic model for adaptive side-channel attacks , 2007, CCS '07.

[33]  Eitan Yaakobi,et al.  Private Proximity Retrieval Codes , 2019, IEEE Transactions on Information Theory.

[34]  Salim El Rouayheb,et al.  Private Information Retrieval From MDS Coded Data in Distributed Storage Systems , 2016, IEEE Transactions on Information Theory.

[35]  Sennur Ulukus,et al.  The Capacity of Private Information Retrieval from Byzantine and Colluding Databases , 2017, IEEE Transactions on Information Theory.

[36]  Frank R. Kschischang,et al.  Universal weakly secure network coding , 2009, 2009 IEEE Information Theory Workshop on Networking and Information Theory.

[37]  Kannan Ramchandran,et al.  One extra bit of download ensures perfectly private information retrieval , 2014, 2014 IEEE International Symposium on Information Theory.

[38]  Hsuan-Yin Lin,et al.  Achieving Maximum Distance Separable Private Information Retrieval Capacity With Linear Codes , 2017, IEEE Transactions on Information Theory.

[39]  Eitan Yaakobi,et al.  Weakly-Private Information Retrieval , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[40]  Hua Sun,et al.  The Capacity of Robust Private Information Retrieval With Colluding Databases , 2016, IEEE Transactions on Information Theory.

[41]  Camilla Hollanti,et al.  $t$ -Private Information Retrieval Schemes Using Transitive Codes , 2017, IEEE Transactions on Information Theory.

[42]  Cynthia Dwork,et al.  Calibrating Noise to Sensitivity in Private Data Analysis , 2006, TCC.

[43]  Matthieu R. Bloch,et al.  Physical-Layer Security: From Information Theory to Security Engineering , 2011 .

[44]  Sennur Ulukus,et al.  The Capacity of Private Information Retrieval From Coded Databases , 2016, IEEE Transactions on Information Theory.

[45]  Camilla Hollanti,et al.  Towards the Capacity of Private Information Retrieval from Coded and Colluding Servers. , 2020 .

[46]  Sudeep Kamath,et al.  An Operational Approach to Information Leakage , 2018, IEEE Transactions on Information Theory.

[47]  Gilles Barthe,et al.  Information-Theoretic Bounds for Differentially Private Mechanisms , 2011, 2011 IEEE 24th Computer Security Foundations Symposium.

[48]  Chao Tian,et al.  Capacity-Achieving Private Information Retrieval Codes With Optimal Message Size and Upload Cost , 2018, IEEE Transactions on Information Theory.