Non-elementary complexities for branching VASS, MELL, and extensions

We study the complexity of reachability problems on branching extensions of vector addition systems, which allows us to derive new non-elementary complexity bounds for fragments and variants of propositional linear logic. We show that provability in the multiplicative exponential fragment is Tower-hard already in the affine case---and hence non-elementary. We match this lower bound for the full propositional affine linear logic, proving its Tower-completeness. We also show that provability in propositional contractive linear logic is Ackermann-complete.

[1]  Sylvain Schmitz,et al.  Alternating Vector Addition Systems with States , 2014, MFCS.

[2]  Tomás Brázdil,et al.  Reachability Games on Extended Vector Addition Systems with States , 2010, ICALP.

[3]  Bruno Guillaume,et al.  Vector addition tree automata , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[4]  Philippe Schnoebelen,et al.  Revisiting Ackermann-Hardness for Lossy Counter Machines and Reset Petri Nets , 2010, MFCS.

[5]  Natarajan Shankar,et al.  Decision problems for propositional linear logic , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[6]  Ahmed Bouajjani,et al.  Analysis of recursively parallel programs , 2012, POPL '12.

[7]  Sylvain Schmitz,et al.  IMPLICATIONAL RELEVANCE LOGIC IS 2-EXPTIME-COMPLETE , 2014, The Journal of Symbolic Logic.

[8]  Parosh Aziz Abdulla,et al.  Solving Parity Games on Integer Vectors , 2013, CONCUR.

[9]  Stéphane Demri,et al.  The covering and boundedness problems for branching vector addition systems , 2013, J. Comput. Syst. Sci..

[10]  James L. Peterson,et al.  Petri Nets , 1977, CSUR.

[11]  Charles Rackoff,et al.  The Covering and Boundedness Problems for Vector Addition Systems , 1978, Theor. Comput. Sci..

[12]  Sylvain Schmitz On the Computational Complexity of Dominance Links in Grammatical Formalisms , 2010, ACL.

[13]  Kazushige Terui,et al.  The finite model property for various fragments of intuitionistic linear logic , 1999, Journal of Symbolic Logic.

[14]  Jean Goubault-Larrecq,et al.  Karp-Miller Trees for a Branching Extension of VASS , 2005, Discret. Math. Theor. Comput. Sci..

[15]  Thomas Schwentick,et al.  Two-variable logic on data trees and XML reasoning , 2009, JACM.

[16]  Ranko Lazic,et al.  The reachability problem for branching vector addition systems requires doubly-exponential space , 2010, Inf. Process. Lett..

[17]  Andrea Asperti,et al.  Intuitionistic Light Affine Logic , 2002, TOCL.

[18]  Alexey P. Kopylov Decidability of Linear Affine Logic , 2001, Inf. Comput..

[19]  Alasdair Urquhart,et al.  The complexity of decision procedures in relevance logic II , 1999, Journal of Symbolic Logic.

[20]  Dominique Larchey-Wendling,et al.  Nondeterministic Phase Semantics and the Undecidability of Boolean BI , 2011, TOCL.

[21]  S. Wainer,et al.  Hierarchies of number-theoretic functions. I , 1970 .

[22]  A. Troelstra Lectures on linear logic , 1992 .

[23]  Max I. Kanovich,et al.  Petri Nets, Horn Programs, Linear Logic and Vector Games , 1995, Ann. Pure Appl. Log..

[24]  Albert R. Meyer,et al.  The Complexity of the Finite Containment Problem for Petri Nets , 1981, JACM.

[25]  Sylvain Schmitz,et al.  Complexity Hierarchies beyond Elementary , 2013, TOCT.

[26]  Alasdair Urquhart,et al.  The Complexity of Linear Logic with Weakening , 2002 .

[27]  Owen Rambow,et al.  Multiset-Valued Linear Index Grammars: Imposing Dominance Constraints on Derivations , 1994, ACL.

[28]  Philippe Schnoebelen,et al.  Ackermannian and Primitive-Recursive Bounds with Dickson's Lemma , 2010, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[29]  Krishnendu Chatterjee,et al.  Generalized Mean-payoff and Energy Games , 2010, FSTTCS.

[30]  Yves Lafont The Finite Model Property for Various Fragments of Linear Logic , 1997, J. Symb. Log..