Proton Tunneling in the Hydrogen‐Evolution Reaction

The quantum‐mechanical theory of tunneling was applied to the proton‐discharge step of the hydrogen‐evolution reaction. An unsymmetric Eckart barrier with allowance for zero‐point energies was employed. The quantum‐mechanical rate iq was calculated by integration with a digital computer for a large number of combinations of barrier width, barrier heights, heats of reaction, and temperatures over a large potential range for protium, deuterium, and tritium. From these results the quantum‐mechanical transmission coefficient τ and the quantum‐mechanical correction Γ to the separation factor, Tafel slopes, and activation energies were calculated. By comparison to observed values of SH,T, and SH,T as a function of temperature and potential the most probable barrier parameters were obtained. These values were tested by comparison of calculated and observed activation energy, Tafel slopes, SH,D as a function of potential, and the rate of protium evolution at high cathodic overpotentials as a function of temperatu...

[1]  S. Srinivasan,et al.  Theoretical Calculations of the Separation Factors in the Hydrogen Evolution Reaction for the Slow Electrochemical Desorption Mechanism , 1964 .

[2]  B. Conway,et al.  POTENTIOSTATIC DETERMINATION OF ELECTROLYTIC HYDROGEN-DEUTERIUM SEPARATION FACTORS AND THE REACTION MECHANISM AT MERCURY AND PLATINUM , 1964 .

[3]  B. Conway,et al.  Isotope Effects in Electrochemical Proton Discharge , 1964 .

[4]  S. Christov Tunneleffekt und quantenverteilung der energie bei der elektrochemischen entladung von protonen und deuteronen , 1964 .

[5]  J. O'm. Bockris,et al.  On the structure of charged interfaces , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[6]  S. C. Nyburg,et al.  Enthalpy of hydration of the proton , 1963 .

[7]  P. Ruetschi,et al.  The oxidation of hydrogen and deuterium on a rotating disk electrode , 1963 .

[8]  S. Christov Einige fragen der tunneltheorie der wasserstoffüberspannung—II. Die temperaturabhängigkeit der stromdichte und die beträge der quanteneffekte , 1961 .

[9]  S. Christov Einige fragen der tunneltheorie der Wasserstoffüberspannung—I. Die gültigkeitsbedin-gungen der tafelschen gleichung und die grösse der quanteneffekte☆ , 1961 .

[10]  S. G. Mason,et al.  VAPOR/LIQUID PARTITION OF TRITIUM IN TRITIATED WATER , 1960 .

[11]  B. Conway,et al.  On the Theory of Proton Conductance in Water and Ice , 1959 .

[12]  B. Conway SOME CONSIDERATIONS ON THE ROLE OF PROTON TUNNELING IN CERTAIN CHARGE TRANSFER PROCESSES , 1959 .

[13]  M. Eigen,et al.  Self-dissociation and protonic charge transport in water and , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  J. Fendley,et al.  The hydrogen isotope effect in the bromination of 2-carbethoxycyclopentanone , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  C. F. Hiskey,et al.  Electrokinetics of Hydrogen Evolution. IV. Isotopic Separation at Mercury Cathodes1,2 , 1954 .

[16]  T. Keii,et al.  MECHANISM OF HYDROGEN ELECTRODE OF MERCURY.:"ELECTROCHEMICAL MECHANISM" , 1951 .

[17]  B. Post,et al.  Electrokinetics of Hydrogen Evolution.1,2 II. Deuterium Overvoltage on Mercury , 1951 .

[18]  R. Parsons,et al.  Calculation of the energy of activation of discharge of hydrogen ions at metal electrodes , 1951 .

[19]  C. Bawn,et al.  Wave mechanical effects and the reactivity of the hydrogen isotopes , 1934 .

[20]  H. Eyring,et al.  ELECTROLYTIC SEPARATION OF HYDROGEN ISOTOPES AND THE MECHANISM OF THE CATHODE PROCESS , 1933 .

[21]  C. Eckart The Penetration of a Potential Barrier by Electrons , 1930 .