Selection of CO2-soluble surfactants for CO2 foam/emulsion in hot and salty carbonate reservoirs

[1]  G. Hirasaki,et al.  Solubility of Alkyl Amine Surfactants in Mixed Gas and Pure CO2 Environments , 2017 .

[2]  M. Sohrabi,et al.  Visualization observation of formation of a new oil phase during immiscible dense CO2 injection in porous media , 2017 .

[3]  S. Biswal,et al.  Mobility of Ethomeen C12 and Carbon Dioxide (CO2) Foam at High Temperature/High Salinity and in Carbonate Cores , 2016 .

[4]  S. Biswal,et al.  Phase behavior and interfacial properties of a switchable ethoxylated amine surfactant at high temperature and effects on CO2-in-water foams. , 2016, Journal of colloid and interface science.

[5]  K. Sasaki,et al.  Swelling and Viscosity Reduction of Heavy Oil by CO 2 -Gas Foaming in Immiscible Condition , 2016 .

[6]  K. Johnston,et al.  CO2-Soluble Ionic Surfactants and CO2 Foams for High-Temperature and High-Salinity Sandstone Reservoirs , 2015 .

[7]  Q. Nguyen,et al.  New method for the determination of surfactant solubility and partitioning between CO2 and brine , 2014 .

[8]  S. Biswal,et al.  Switchable Nonionic to Cationic Ethoxylated Amine Surfactants for CO2 Enhanced Oil Recovery in High-Temperature, High-Salinity Carbonate Reservoirs , 2014 .

[9]  Jianbo Wang,et al.  Performance and gas breakthrough during CO2 immiscible flooding in ultra-low permeability reservoirs , 2014 .

[10]  S. Biswal,et al.  Adsorption of a Switchable Cationic Surfactant on Natural Carbonate Minerals , 2014 .

[11]  S. Biswal,et al.  Switchable Diamine Surfactants for CO2 Mobility Control in Enhanced Oil Recovery and Sequestration , 2014 .

[12]  Chang Da,et al.  Adsorption of cationic and anionic surfactants on natural and synthetic carbonate materials. , 2013, Journal of colloid and interface science.

[13]  Yongan Gu,et al.  Oil recovery mechanisms and asphaltene precipitation phenomenon in immiscible and miscible CO2 flooding processes , 2013 .

[14]  Q. Nguyen,et al.  Effect of Surfactant Partitioning on Mobility Control During Carbon-Dioxide Flooding , 2013 .

[15]  Alexey Andrianov,et al.  Novel Insight Into Foam Mobility Control , 2013 .

[16]  Y. Soong,et al.  CO2-Soluble, Nonionic, Water-Soluble Surfactants That Stabilize CO2-in-Brine Foams , 2012 .

[17]  B. K. Mishra,et al.  Clouding behaviour in surfactant systems. , 2011, Advances in colloid and interface science.

[18]  K. Johnston,et al.  Interfacial tension and the behavior of microemulsions and macroemulsions of water and carbon dioxide with a branched hydrocarbon nonionic surfactant , 2010 .

[19]  Pacelli L.J. Zitha,et al.  Carbon Dioxide Foam Rheology in Porous Media: A CT Scan Study , 2007 .

[20]  A. Singhal,et al.  Lessons From Trinidad's CO2 Immiscible Pilot Projects 1973-2003 , 2005 .

[21]  K. Johnston,et al.  Water-in-carbon dioxide microemulsions with methylated branched hydrocarbon surfactants , 2003 .

[22]  K. J. Harpole,et al.  CO 2 -Foam Field Test at the East Vacuum Grayburg/San Andres Unit , 1995 .

[23]  Kamy Sepehrnoori,et al.  CO2 Flow Patterns Under Multiphase Flow: Heterogeneous Field-Scale Conditions , 1994 .

[24]  A. G. Graham,et al.  Mobility Control Experience in the Joffre Viking Miscible CO2 Flood , 1993 .

[25]  A. J. Bennet,et al.  Recent perspectives concerning the mechanism of H3O+- and hydroxide-promoted amide hydrolysis , 1992 .

[26]  J. P. Heller,et al.  Evaluation of Surfactants for CO2-Foam Mobility Control , 1992 .

[27]  L. Talley Hydrolytic Stability of Alkylethoxy Sulfates , 1988 .