Multispectral and hyperspectral imaging with AOTF for object recognition

Acousto-optic tunable-filter (AOTF) technology has been used in the design of a no-moving parts, compact, lightweight, field portable, automated, adaptive spectral imaging system when combined with a high sensitivity imaging detector array. Such a system could detect spectral signatures of targets and/or background, which contain polarization information and can be digitally processed by a variety of algorithms. At the Army Research Laboratory, we have developed and used a number of AOTF imaging systems and are also carrying out the development of such imagers at longer wavelengths. We have carried out hyperspectral and multispectral imaging using AOTF systems covering the spectral range from the visible to mid-IR. One of the imager uses a two-cascaded collinear-architecture AOTF cell in the visible-to-near-IR range with a digital Si charge-coupled device camera as the detector. The images obtained with this system showed no color blurring or image shift due to the angular deviation of different colors as a result of diffraction, and the digital images are stored and processed with great ease. The spatial resolution of the filter was evaluated by means of the lines of a target chart. We have also obtained and processed images from another noncollinear visible-to-near-IR AOTF imager with a digital camera, and used hyperspectral image processing software to enhance object recognition in cluttered background. We are presently working on a mid-IR AOTF imaging system that uses a high- performance InSb focal plane array and image acquisition and processing software. We describe our hyperspectral imaging program and present results from our imaging experiments.