Amphipathic helix motif: Classes and properties

[1]  J. Segrest,et al.  Studies of synthetic peptide analogs of the amphipathic helix. Effect of charged amino acid residue topography on lipid affinity. , 1980, The Journal of biological chemistry.

[2]  D. Eisenberg,et al.  Analysis of membrane and surface protein sequences with the hydrophobic moment plot. , 1984, Journal of molecular biology.

[3]  D. Clarke,et al.  Location of high affinity Ca2 +-binding sites within the predicted transmembrahe domain of the sarco-plasmic reticulum Ca2+-ATPase , 1989, Nature.

[4]  P. Gros,et al.  Glucagon gene sequence. Four of six exons encode separate functional domains of rat pre-proglucagon. , 1984, The Journal of biological chemistry.

[5]  M. Prabhakaran,et al.  Identification of peptide hormones of the amphipathic helix class using the helical hydrophobic moment algorithm , 1989, Proteins.

[6]  Ventilation of Toad Lungs in the Absence of the Buccopharyngeal Pump , 1973, Nature.

[7]  W. Li,et al.  Human apolipoprotein B: analysis of internal repeats and homology with other apolipoproteins. , 1987, Journal of lipid research.

[8]  M. Zasloff,et al.  Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor , 1987 .

[9]  E. Bamberg,et al.  Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. , 1989, The EMBO journal.

[10]  T. A. Hughes,et al.  Effect of oxidation on the properties of apolipoproteins A-I and A-II. , 1988, Journal of lipid research.

[11]  J. W. Taylor,et al.  The structural characterization of beta-endorphin and related peptide hormones and neurotransmitters. , 1986, Pharmacological reviews.

[12]  G M Anantharamaiah,et al.  Studies of synthetic peptide analogs of the amphipathic helix. Effect of charge distribution, hydrophobicity, and secondary structure on lipid association and lecithin:cholesterol acyltransferase activation. , 1987, The Journal of biological chemistry.

[13]  J. Weinstein,et al.  High‐density lipoprotein recombinants: evidence for a bicycle tire micelle structure obtained by neutron scattering and electron microscopy , 1979, FEBS letters.

[14]  J. Hamilton,et al.  Nuclear magnetic resonance studies of lipoproteins. , 1986, Methods in enzymology.

[15]  W. Fitch An improved method of testing for evolutionary homology. , 1966, Journal of molecular biology.

[16]  H. Khorana,et al.  Aspartic acid substitutions affect proton translocation by bacteriorhodopsin. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[17]  B. Rudy,et al.  Interactions between membranes and cytolytic peptides. , 1986, Biochimica et biophysica acta.

[18]  M. Caron,et al.  A family of receptors coupled to guanine nucleotide regulatory proteins. , 1987, Biochemistry.

[19]  H. G. Khorana Anderegg, R. J.,Nihei, K.,and Biemann Amino acid sequence of bacteriorhodopsin , 1979 .

[20]  W. DeGrado,et al.  DESIGN, SYNTHESIS, AND CHARACTERIZATION OF A CYTOTOXIC PEPTIDE WITH MELITTIN-LIKE ACTIVITY , 1981 .

[21]  T O Yeates,et al.  Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[22]  R. G. Hart,et al.  Structure of Myoglobin: A Three-Dimensional Fourier Synthesis at 2 Å. Resolution , 1960, Nature.

[23]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.

[24]  K Nishikawa,et al.  Homology in protein sequences expressed by correlation coefficients. , 1981, Journal of theoretical biology.

[25]  D Eisenberg,et al.  Hydrophobic organization of membrane proteins. , 1989, Science.

[26]  T. Forte,et al.  [26] Electron microscopy of negatively stained lipoproteins , 1986 .

[27]  C. Tanford,et al.  The hydrophobic effect and the organization of living matter. , 1978, Science.

[28]  H. Mantsch,et al.  Properties of lipid complexes with amphipathic helix-forming peptides. Role of distribution of peptide charges. , 1989, The Journal of biological chemistry.

[29]  E. Gong,et al.  Characterization of discoidal complexes of phosphatidylcholine, apolipoprotein A-I and cholesterol by gradient gel electrophoresis. , 1983, Biochimica et biophysica acta.

[30]  G. Anantharamaiah,et al.  Characterization of high density lipoprotein subspecies: structural studies by single vertical spin ultracentrifugation and immunoaffinity chromatography. , 1987, Journal of lipid research.

[31]  D. Malencik,et al.  Chapter 1 – Peptides Recognizing Calmodulin , 1986 .

[32]  J. Hokanson,et al.  [8] Single vertical spin density gradient ultracentrifugation , 1986 .

[33]  E. Kaiser,et al.  Secondary structures of proteins and peptides in amphiphilic environments. (A review). , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[34]  F. Crick,et al.  The packing of α‐helices: simple coiled‐coils , 1953 .

[35]  A. Argiolas,et al.  Isolation and characterization of two new peptides, mastoparan C and crabrolin, from the venom of the European hornet, Vespa crabro. , 1984, The Journal of biological chemistry.

[36]  T. Blundell,et al.  X-ray analysis (1. 4-A resolution) of avian pancreatic polypeptide: Small globular protein hormone. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[37]  D. Engelman,et al.  Path of the polypeptide in bacteriorhodopsin. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[38]  A. Argiolas,et al.  Facilitation of phospholipase A2 activity by mastoparans, a new class of mast cell degranulating peptides from wasp venom. , 1983, The Journal of biological chemistry.

[39]  H De Loof,et al.  Conformational analysis of lipid-associating proteins in a lipid environment. , 1988, Biochimica et biophysica acta.

[40]  E. Ross,et al.  Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). , 1988, The Journal of biological chemistry.

[41]  M. Rosseneu Isothermal calorimetry of apolipoproteins. , 1986, Methods in enzymology.

[42]  M. Schiffer,et al.  Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. , 1967, Biophysical journal.

[43]  A. Jonas,et al.  VIEW FROM FLUORESCENCE ANALYSES: INTERACTION OF APOLIPOPROTEIN A‐I WITH L‐α‐DIMYRISTOYLPHOSPHATIDYLCHOLINE VESICLES * , 1980, Annals of the New York Academy of Sciences.

[44]  C. Luo,et al.  Structure and evolution of the apolipoprotein multigene family. , 1986, Journal of molecular biology.

[45]  R Staden,et al.  An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences. , 1982, Nucleic acids research.

[46]  B. Gibson,et al.  Biosynthesis and degradation of peptides derived from Xenopus laevis prohormones. , 1987, The Biochemical journal.

[47]  G. Heijne Mitochondrial targeting sequences may form amphiphilic helices. , 1986 .

[48]  H De Loof,et al.  Use of hydrophobicity profiles to predict receptor binding domains on apolipoprotein E and the low density lipoprotein apolipoprotein B-E receptor. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[49]  M. Fujino,et al.  Conformational change of mastoparan from wasp venom on binding with phospholipid membrane , 1983, FEBS letters.

[50]  J. Segrest,et al.  Studies of synthetic peptide analogs of the amphipathic helix. Correlation of structure with function. , 1985, The Journal of biological chemistry.

[51]  J. T. Yang,et al.  Conformation of beta-endorphin and beta-lipotropin: formation of helical structure in methanol and sodium dodecyl sulfate solutions. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Kaback Hr Site-Directed Mutagenesis and ION-Gradient Driven Active Transport: On the Path of the Proton , 1988 .

[53]  Design and biological activity of analogs of growth hormone releasing factor with potential amphiphilic helical carboxyl termini. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Ian J. Tickle,et al.  X-ray analysis of glucagon and its relationship to receptor binding , 1975, Nature.

[55]  A. Gotto,et al.  Apolipoprotein/lipid interactions: studies with synthetic polypeptides. , 1982, CRC critical reviews in biochemistry.

[56]  M Zasloff,et al.  Antimicrobial properties of peptides from Xenopus granular gland secretions , 1988, FEBS letters.

[57]  E. Kaiser,et al.  Surface properties of an amphiphilic peptide hormone and of its analog: corticotropin-releasing factor and sauvagine. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[58]  D. Atkinson,et al.  The complete sequence and structural analysis of human apolipoprotein B‐100: relationship between apoB‐100 and apoB‐48 forms. , 1986, The EMBO journal.

[59]  S. Handwerger,et al.  Apolipoproteins AI, AII, and CI stimulate placental lactogen release from human placental tissue. A novel action of high density lipoprotein apolipoproteins. , 1987, The Journal of clinical investigation.

[60]  J. Segrest,et al.  Studies of synthetic peptide analogs of the amphipathic helix. Competitive displacement of exchangeable apolipoproteins from native lipoproteins. , 1983, The Journal of biological chemistry.

[61]  Design and Synthesis of a Model Peptide with β-Endorphin-Like Properties , 1981 .

[62]  M. Phillips,et al.  The helical hydrophobic moments and surface activities of serum apolipoproteins. , 1983, Biochimica et biophysica acta.

[63]  R M Stroud,et al.  Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[64]  D. Engelman,et al.  Bacteriorhodopsin is an inside-out protein. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[65]  H. Loh,et al.  beta-Endorphin: formation of alpha-helix in lipid solutions. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[66]  M. Zasloff,et al.  Antimicrobial activity of synthetic magainin peptides and several analogues. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[67]  E. Kaiser,et al.  Design, synthesis, and characterization of a model peptide having potent calcitonin-like biological activity: implications for calcitonin structure/activity. , 1985, Biochemistry.

[68]  J. C. Kendrew,et al.  Structure and function of haemoglobin: II. Some relations between polypeptide chain configuration and amino acid sequence , 1965 .

[69]  G. Feher,et al.  The bacterial photosynthetic reaction center as a model for membrane proteins. , 1989, Annual review of biochemistry.

[70]  William F. DeGrado,et al.  Predicted calmodulin‐binding sequence in the γ subunit of phosphorylase b kinase , 1987 .

[71]  J. Segrest,et al.  Structural studies of apolipoprotein A-I/phosphatidylcholine recombinants by high-field proton NMR, nondenaturing gradient gel electrophoresis, and electron microscopy. , 1984, Biochemistry.

[72]  David Eisenberg,et al.  The helical hydrophobic moment: a measure of the amphiphilicity of a helix , 1982, Nature.

[73]  S. McKnight,et al.  The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. , 1988, Science.

[74]  R. Henderson,et al.  Three-dimensional model of purple membrane obtained by electron microscopy , 1975, Nature.

[75]  R. Kretsinger,et al.  Structure and evolution of calcium-modulated proteins. , 1980, CRC critical reviews in biochemistry.

[76]  C. DeLisi,et al.  Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. , 1987, Journal of molecular biology.

[77]  J. Venter,et al.  Site-directed mutagenesis of human beta-adrenergic receptors: substitution of aspartic acid-130 by asparagine produces a receptor with high-affinity agonist binding that is uncoupled from adenylate cyclase. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[78]  C. Strader,et al.  Identification of residues required for ligand binding to the beta-adrenergic receptor. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[79]  G. von Heijne,et al.  Helical sidedness and the distribution of polar residues in trans-membrane helices. , 1983, Journal of molecular biology.

[80]  H. Khorana Bacteriorhodopsin, a membrane protein that uses light to translocate protons. , 1988, The Journal of biological chemistry.

[81]  Y. Kuroda,et al.  A wasp venom mastoparan‐induced polyphosphoinositide breakdown in rat peritoneal mast cells , 1985, FEBS letters.

[82]  M. Caron,et al.  Adrenergic receptors. Models for the study of receptors coupled to guanine nucleotide regulatory proteins. , 1988, The Journal of biological chemistry.

[83]  C. Schmidt,et al.  Studies of synthetic peptide analogs of the amphipathic helix. Structure of complexes with dimyristoyl phosphatidylcholine. , 1985, The Journal of biological chemistry.

[84]  R. Brasseur,et al.  Functional differentiation of amphiphilic helices of the apolipoproteins by hydrophobic moment analysis. , 1987, Biochimica et biophysica acta.

[85]  A. V. Kiselev,et al.  The structural basis of the functioning of bacteriorhodopsin: An overview , 1979, FEBS letters.

[86]  C. Strader,et al.  Identification and sequence of a binding site peptide of the beta 2-adrenergic receptor. , 1988, Biochemistry.

[87]  D. Sargent,et al.  Membrane lipid phase as catalyst for peptide-receptor interactions. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[88]  S. Handwerger,et al.  Synthetic amphipathic peptides resembling apolipoproteins stimulate the release of human placental lactogen. , 1989, The Journal of biological chemistry.

[89]  V. Lim Polypeptide chain folding through a highly helical intermediate as a general principle of globular protein structure formation , 1978, FEBS letters.

[90]  M. J. Chapman [3] Comparative analysis of mammalian plasma lipoproteins , 1986 .

[91]  M. Phillips,et al.  [22] Studies of apolipoproteins at the air-water interface , 1986 .

[92]  D. Eisenberg,et al.  The hydrophobic moment detects periodicity in protein hydrophobicity. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[93]  L. Pauling,et al.  The structure of synthetic polypeptides. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[94]  P. Clifton,et al.  Effects of serum amyloid A protein (SAA) on composition, size, and density of high density lipoproteins in subjects with myocardial infarction. , 1985, Journal of lipid research.

[95]  M. Boguski,et al.  Comparative analysis of repeated sequences in rat apolipoproteins A-I, A-IV, and E. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[96]  R. Fletterick,et al.  Predicted secondary structure and membrane topology of the scrapie prion protein. , 1987, Protein engineering.

[97]  P. Laggner,et al.  Structure of two subfractions of normal porcine (Sus domesticus) serum low-density lipoproteins. X-ray small-angle scattering studies. , 1981, Biochemistry.

[98]  A. Gotto,et al.  A molecular theory of lipid—protein interactions in the plasma lipoproteins , 1974, FEBS letters.

[99]  Lingafelter Ec Aqueous solutions of paraffin-chain salts. , 1949 .

[100]  H. G. Khorana,et al.  Amino acid sequence of bacteriorhodopsin. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[101]  L. Swanson,et al.  Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing , 1983, Nature.

[102]  W. Heideman,et al.  Chapter 3 – The Energetics and Chemistry for Interactions between Calmodulin and Calmodulin-Binding Proteins , 1982 .

[103]  W. Vale,et al.  Synthetic competitive antagonists of corticotropin-releasing factor: effect on ACTH secretion in the rat. , 1984, Science.

[104]  B. Sakmann,et al.  Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance , 1988, Nature.

[105]  P. Kinnunen,et al.  Action of lipoprotein lipase on mixed triacylglycerol/phosphatidylcholine monolayers. Activation by apolipoprotein C-II. , 1983, The Journal of biological chemistry.

[106]  C. Li,et al.  Isolation, characterization, and synthesis of a corticotropin-inhibiting peptide from human pituitary glands. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[107]  J. S. Owen,et al.  The secondary structure of apolipoproteins in human HDL3 particles after chemical modification of their tyrosine, lysine, cysteine or arginine residues. A Fourier transform infrared spectroscopy study. , 1988, Biochimica et biophysica acta.

[108]  P. Robberecht,et al.  Interaction of porcine vasoactive intestinal peptide with dispersed pancreatic acinar cells from the guinea pig. Structural requirements for effects of vasoactive intestinal peptide and secretin on cellular adenosine 3':5'-monophosphate. , 1976, The Journal of biological chemistry.

[109]  C. Kitada,et al.  A new mast cell degranulating peptide "mastoparan" in the venom of Vespula lewisii. , 1979, Chemical & pharmaceutical bulletin.

[110]  L. Hester,et al.  Lipid-peptide association and activation of lecithin:cholesterol acyltransferase. Effect of alpha-helicity. , 1986, The Journal of biological chemistry.

[111]  C. Fielding,et al.  A protein cofactor of lecithin:cholesterol acyltransferase. , 1972, Biochemical and biophysical research communications.

[112]  V. Mutt,et al.  Synthesis of secretin. IV. Secondary structure in a miniature protein. , 1969, Journal of the American Chemical Society.

[113]  A. D. McLachlan,et al.  Solvation energy in protein folding and binding , 1986, Nature.

[114]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[115]  A. Argiolas,et al.  Bombolitins, a new class of mast cell degranulating peptides from the venom of the bumblebee Megabombus pennsylvanicus. , 1985, The Journal of biological chemistry.

[116]  W. DeGrado,et al.  Protein design, a minimalist approach. , 1989, Science.

[117]  F. Toma,et al.  Conformational studies of corticotropin1-32 and constitutive peptides by circular dichroism. , 1976, Biochimica et biophysica acta.

[118]  D. Dowbenko,et al.  Topogenic analysis of the human immunodeficiency virus type 1 envelope glycoprotein, gp160, in microsomal membranes , 1988, The Journal of cell biology.